gtsam/gtsam/linear/NoiseModel.cpp

749 lines
26 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file NoiseModel.cpp
* @date Jan 13, 2010
* @author Richard Roberts
* @author Frank Dellaert
*/
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/base/timing.h>
#include <cmath>
#include <cassert>
#include <iostream>
#include <limits>
#include <stdexcept>
#include <typeinfo>
using namespace std;
namespace gtsam {
namespace noiseModel {
/* ************************************************************************* */
// update A, b
// A' \define A_{S}-ar and b'\define b-ad
// Linear algebra: takes away projection on latest orthogonal
// Graph: make a new factor on the separator S
// __attribute__ ((noinline)) // uncomment to prevent inlining when profiling
template<class MATRIX>
void updateAb(MATRIX& Ab, int j, const Vector& a, const Vector& rd) {
size_t n = Ab.cols()-1;
Ab.middleCols(j+1,n-j) -= a * rd.segment(j+1, n-j).transpose();
}
/* ************************************************************************* */
// check *above the diagonal* for non-zero entries
std::optional<Vector> checkIfDiagonal(const Matrix& M) {
size_t m = M.rows(), n = M.cols();
assert(m > 0);
// check all non-diagonal entries
bool full = false;
size_t i, j;
for (i = 0; i < m; i++)
if (!full)
for (j = i + 1; j < n; j++)
if (std::abs(M(i, j)) > 1e-9) {
full = true;
break;
}
if (full) {
return {};
} else {
Vector diagonal(n);
for (j = 0; j < n; j++)
diagonal(j) = M(j, j);
return std::move(diagonal);
}
}
/* ************************************************************************* */
Vector Base::sigmas() const {
throw("Base::sigmas: sigmas() not implemented for this noise model");
}
/* ************************************************************************* */
double Base::squaredMahalanobisDistance(const Vector& v) const {
// Note: for Diagonal, which does ediv_, will be correct for constraints
Vector w = whiten(v);
return w.dot(w);
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::SqrtInformation(const Matrix& R, bool smart) {
size_t m = R.rows(), n = R.cols();
if (m != n)
throw invalid_argument("Gaussian::SqrtInformation: R not square");
if (smart) {
std::optional<Vector> diagonal = checkIfDiagonal(R);
if (diagonal)
return Diagonal::Sigmas(diagonal->array().inverse(), true);
}
// NOTE(frank): only reaches here if !(smart && diagonal)
return std::make_shared<Gaussian>(R.rows(), R);
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Information(const Matrix& information, bool smart) {
size_t m = information.rows(), n = information.cols();
if (m != n)
throw invalid_argument("Gaussian::Information: R not square");
std::optional<Vector> diagonal = {};
if (smart)
diagonal = checkIfDiagonal(information);
if (diagonal)
return Diagonal::Precisions(*diagonal, true);
else {
Eigen::LLT<Matrix> llt(information);
Matrix R = llt.matrixU();
return std::make_shared<Gaussian>(n, R);
}
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance,
bool smart) {
size_t m = covariance.rows(), n = covariance.cols();
if (m != n)
throw invalid_argument("Gaussian::Covariance: covariance not square");
std::optional<Vector> variances = {};
if (smart)
variances = checkIfDiagonal(covariance);
if (variances)
return Diagonal::Variances(*variances, true);
else {
// NOTE: if cov = L'*L, then the square root information R can be found by
// QR, as L.inverse() = Q*R, with Q some rotation matrix. However, R has
// annoying sign flips with respect the simpler Information(inv(cov)),
// hence we choose the simpler path here:
return Information(covariance.inverse(), false);
}
}
/* ************************************************************************* */
void Gaussian::print(const string& name) const {
gtsam::print(thisR(), name + "Gaussian ");
}
/* ************************************************************************* */
bool Gaussian::equals(const Base& expected, double tol) const {
const Gaussian* p = dynamic_cast<const Gaussian*> (&expected);
if (p == nullptr) return false;
if (typeid(*this) != typeid(*p)) return false;
return equal_with_abs_tol(R(), p->R(), sqrt(tol));
}
/* ************************************************************************* */
Matrix Gaussian::covariance() const {
// Uses a fast version of `covariance = information().inverse();`
const Matrix& R = this->R();
Matrix I = Matrix::Identity(R.rows(), R.cols());
// Fast inverse of upper-triangular matrix R using forward-substitution
Matrix Rinv = R.triangularView<Eigen::Upper>().solve(I);
// (R' * R)^{-1} = R^{-1} * R^{-1}'
return Rinv * Rinv.transpose();
}
/* ************************************************************************* */
Vector Gaussian::sigmas() const {
return Vector(covariance().diagonal()).cwiseSqrt();
}
/* ************************************************************************* */
Vector Gaussian::whiten(const Vector& v) const {
return thisR() * v;
}
/* ************************************************************************* */
Vector Gaussian::unwhiten(const Vector& v) const {
return backSubstituteUpper(thisR(), v);
}
/* ************************************************************************* */
Matrix Gaussian::Whiten(const Matrix& H) const {
return thisR() * H;
}
/* ************************************************************************* */
void Gaussian::WhitenInPlace(Matrix& H) const {
H = thisR() * H;
}
/* ************************************************************************* */
void Gaussian::WhitenInPlace(Eigen::Block<Matrix> H) const {
H = thisR() * H;
}
/* ************************************************************************* */
// General QR, see also special version in Constrained
SharedDiagonal Gaussian::QR(Matrix& Ab) const {
gttic(Gaussian_noise_model_QR);
static const bool debug = false;
// get size(A) and maxRank
// TODO: really no rank problems ?
size_t m = Ab.rows(), n = Ab.cols()-1;
size_t maxRank = min(m,n);
// pre-whiten everything (cheaply if possible)
WhitenInPlace(Ab);
if(debug) gtsam::print(Ab, "Whitened Ab: ");
// Eigen QR - much faster than older householder approach
inplace_QR(Ab);
Ab.triangularView<Eigen::StrictlyLower>().setZero();
// hand-coded householder implementation
// TODO: necessary to isolate last column?
// householder(Ab, maxRank);
return noiseModel::Unit::Create(maxRank);
}
void Gaussian::WhitenSystem(vector<Matrix>& A, Vector& b) const {
for(Matrix& Aj: A) { WhitenInPlace(Aj); }
whitenInPlace(b);
}
void Gaussian::WhitenSystem(Matrix& A, Vector& b) const {
WhitenInPlace(A);
whitenInPlace(b);
}
void Gaussian::WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const {
WhitenInPlace(A1);
WhitenInPlace(A2);
whitenInPlace(b);
}
void Gaussian::WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const{
WhitenInPlace(A1);
WhitenInPlace(A2);
WhitenInPlace(A3);
whitenInPlace(b);
}
Matrix Gaussian::information() const { return R().transpose() * R(); }
/* *******************************************************************************/
double Gaussian::logDetR() const {
double logDetR =
R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
return logDetR;
}
/* *******************************************************************************/
double Gaussian::logDeterminant() const {
// Since noise models are Gaussian, we can get the logDeterminant easily
// Sigma = (R'R)^{-1}, det(Sigma) = det((R'R)^{-1}) = det(R'R)^{-1}
// log det(Sigma) = -log(det(R'R)) = -2*log(det(R))
// Hence, log det(Sigma)) = -2.0 * logDetR()
return -2.0 * logDetR();
}
/* *******************************************************************************/
double Gaussian::negLogConstant() const {
// log(det(Sigma)) = -2.0 * logDetR
// which gives neg-log = 0.5*n*log(2*pi) + 0.5*(-2.0 * logDetR())
// = 0.5*n*log(2*pi) - (0.5*2.0 * logDetR())
// = 0.5*n*log(2*pi) - logDetR()
size_t n = dim();
constexpr double log2pi = 1.8378770664093454835606594728112;
// Get -log(1/\sqrt(|2pi Sigma|)) = 0.5*log(|2pi Sigma|)
return 0.5 * n * log2pi - logDetR();
}
/* ************************************************************************* */
// Diagonal
/* ************************************************************************* */
Diagonal::Diagonal() : Gaussian() {}
/* ************************************************************************* */
Diagonal::Diagonal(const Vector& sigmas)
: Gaussian(sigmas.size()),
sigmas_(sigmas),
invsigmas_(sigmas.array().inverse()),
precisions_(invsigmas_.array().square()) {
}
/* ************************************************************************* */
Diagonal::shared_ptr Diagonal::Variances(const Vector& variances, bool smart) {
// check whether all the same entry
return (smart && (variances.array() == variances(0)).all())
? Isotropic::Variance(variances.size(), variances(0), true)
: shared_ptr(new Diagonal(variances.cwiseSqrt()));
}
/* ************************************************************************* */
Diagonal::shared_ptr Diagonal::Sigmas(const Vector& sigmas, bool smart) {
if (smart) {
size_t n = sigmas.size();
if (n == 0) goto full;
// look for zeros to make a constraint
if ((sigmas.array() < 1e-8).any()) {
return Constrained::MixedSigmas(sigmas);
}
// check whether all the same entry
if ((sigmas.array() == sigmas(0)).all()) {
return Isotropic::Sigma(n, sigmas(0), true);
}
}
full:
return Diagonal::shared_ptr(new Diagonal(sigmas));
}
/* ************************************************************************* */
Diagonal::shared_ptr Diagonal::Precisions(const Vector& precisions,
bool smart) {
return Variances(precisions.array().inverse(), smart);
}
/* ************************************************************************* */
void Diagonal::print(const string& name) const {
gtsam::print(sigmas_, name + "diagonal sigmas ");
}
/* ************************************************************************* */
Vector Diagonal::whiten(const Vector& v) const {
return v.cwiseProduct(invsigmas_);
}
Vector Diagonal::unwhiten(const Vector& v) const {
return v.cwiseProduct(sigmas_);
}
Matrix Diagonal::Whiten(const Matrix& H) const {
return vector_scale(invsigmas(), H);
}
void Diagonal::WhitenInPlace(Matrix& H) const {
vector_scale_inplace(invsigmas(), H);
}
void Diagonal::WhitenInPlace(Eigen::Block<Matrix> H) const {
H = invsigmas().asDiagonal() * H;
}
/* *******************************************************************************/
double Diagonal::logDetR() const {
return invsigmas_.unaryExpr([](double x) { return log(x); }).sum();
}
/* ************************************************************************* */
// Constrained
/* ************************************************************************* */
namespace internal {
// switch precisions and invsigmas to finite value
// TODO: why?? And, why not just ask s==0.0 below ?
static void fix(const Vector& sigmas, Vector& precisions, Vector& invsigmas) {
for (Vector::Index i = 0; i < sigmas.size(); ++i)
if (!std::isfinite(1. / sigmas[i])) {
precisions[i] = 0.0;
invsigmas[i] = 0.0;
}
}
}
/* ************************************************************************* */
Constrained::Constrained(const Vector& sigmas)
: Diagonal(sigmas), mu_(Vector::Constant(sigmas.size(), 1000.0)) {
internal::fix(sigmas, precisions_, invsigmas_);
}
/* ************************************************************************* */
Constrained::Constrained(const Vector& mu, const Vector& sigmas)
: Diagonal(sigmas), mu_(mu) {
internal::fix(sigmas, precisions_, invsigmas_);
}
/* ************************************************************************* */
Constrained::shared_ptr Constrained::MixedSigmas(const Vector& mu,
const Vector& sigmas) {
return shared_ptr(new Constrained(mu, sigmas));
}
/* ************************************************************************* */
bool Constrained::constrained(size_t i) const {
// TODO why not just check sigmas_[i]==0.0 ?
return !std::isfinite(1./sigmas_[i]);
}
/* ************************************************************************* */
void Constrained::print(const std::string& name) const {
gtsam::print(sigmas_, name + "constrained sigmas ");
gtsam::print(mu_, name + "constrained mu ");
}
/* ************************************************************************* */
Vector Constrained::whiten(const Vector& v) const {
// If sigmas[i] is not 0 then divide v[i] by sigmas[i], as usually done in
// other normal Gaussian noise model. Otherwise, sigmas[i] = 0 indicating
// a hard constraint, we don't do anything.
const Vector& a = v;
const Vector& b = sigmas_;
size_t n = a.size();
assert (b.size()==a.size());
Vector c(n);
for( size_t i = 0; i < n; i++ ) {
const double& ai = a(i), bi = b(i);
c(i) = (bi==0.0) ? ai : ai/bi; // NOTE: not ediv_()
}
return c;
}
/* ************************************************************************* */
Constrained::shared_ptr Constrained::MixedSigmas(const Vector& sigmas) {
return MixedSigmas(Vector::Constant(sigmas.size(), 1000.0), sigmas);
}
Constrained::shared_ptr Constrained::MixedSigmas(double m,
const Vector& sigmas) {
return MixedSigmas(Vector::Constant(sigmas.size(), m), sigmas);
}
Constrained::shared_ptr Constrained::MixedVariances(const Vector& mu,
const Vector& variances) {
return shared_ptr(new Constrained(mu, variances.cwiseSqrt()));
}
Constrained::shared_ptr Constrained::MixedVariances(const Vector& variances) {
return shared_ptr(new Constrained(variances.cwiseSqrt()));
}
Constrained::shared_ptr Constrained::MixedPrecisions(const Vector& mu,
const Vector& precisions) {
return MixedVariances(mu, precisions.array().inverse());
}
Constrained::shared_ptr Constrained::MixedPrecisions(const Vector& precisions) {
return MixedVariances(precisions.array().inverse());
}
/* ************************************************************************* */
double Constrained::squaredMahalanobisDistance(const Vector& v) const {
Vector w = Diagonal::whiten(v); // get noisemodel for constrained elements
for (size_t i=0; i<dim_; ++i) // add mu weights on constrained variables
if (constrained(i)) // whiten makes constrained variables zero
w[i] = v[i] * sqrt(mu_[i]); // TODO: may want to store sqrt rather than rebuild
return w.dot(w);
}
/* ************************************************************************* */
Matrix Constrained::Whiten(const Matrix& H) const {
Matrix A = H;
for (DenseIndex i=0; i<(DenseIndex)dim_; ++i)
if (!constrained(i)) // if constrained, leave row of A as is
A.row(i) *= invsigmas_(i);
return A;
}
/* ************************************************************************* */
void Constrained::WhitenInPlace(Matrix& H) const {
for (DenseIndex i=0; i<(DenseIndex)dim_; ++i)
if (!constrained(i)) // if constrained, leave row of H as is
H.row(i) *= invsigmas_(i);
}
/* ************************************************************************* */
void Constrained::WhitenInPlace(Eigen::Block<Matrix> H) const {
for (DenseIndex i=0; i<(DenseIndex)dim_; ++i)
if (!constrained(i)) // if constrained, leave row of H as is
H.row(i) *= invsigmas_(i);
}
/* ************************************************************************* */
Constrained::shared_ptr Constrained::unit() const {
Vector sigmas = Vector::Ones(dim());
for (size_t i=0; i<dim(); ++i)
if (constrained(i))
sigmas(i) = 0.0;
return MixedSigmas(mu_, sigmas);
}
/* ************************************************************************* */
// Special version of QR for Constrained calls slower but smarter code
// that deals with possibly zero sigmas
// It is Gram-Schmidt orthogonalization rather than Householder
// Check whether column a triggers a constraint and corresponding variable is deterministic
// Return constraint_row with maximum element in case variable plays in multiple constraints
template <typename VECTOR>
std::optional<size_t> check_if_constraint(VECTOR a, const Vector& invsigmas, size_t m) {
std::optional<size_t> constraint_row;
// not zero, so roundoff errors will not be counted
// TODO(frank): that's a fairly crude way of dealing with roundoff errors :-(
double max_element = 1e-9;
for (size_t i = 0; i < m; i++) {
if (!std::isinf(invsigmas[i]))
continue;
double abs_ai = std::abs(a(i,0));
if (abs_ai > max_element) {
max_element = abs_ai;
constraint_row = i;
}
}
return constraint_row;
}
SharedDiagonal Constrained::QR(Matrix& Ab) const {
static const double kInfinity = std::numeric_limits<double>::infinity();
// get size(A) and maxRank
size_t m = Ab.rows();
const size_t n = Ab.cols() - 1;
const size_t maxRank = min(m, n);
// create storage for [R d]
typedef std::tuple<size_t, Matrix, double> Triple;
list<Triple> Rd;
Matrix rd(1, n + 1); // and for row of R
Vector invsigmas = sigmas_.array().inverse();
Vector weights = invsigmas.array().square(); // calculate weights once
// We loop over all columns, because the columns that can be eliminated
// are not necessarily contiguous. For each one, estimate the corresponding
// scalar variable x as d-rS, with S the separator (remaining columns).
// Then update A and b by substituting x with d-rS, zero-ing out x's column.
for (size_t j = 0; j < n; ++j) {
// extract the first column of A
Eigen::Block<Matrix> a = Ab.block(0, j, m, 1);
// Check whether we need to handle as a constraint
std::optional<size_t> constraint_row = check_if_constraint(a, invsigmas, m);
if (constraint_row) {
// Handle this as a constraint, as the i^th row has zero sigma with non-zero entry A(i,j)
// In this case, the row in [R|d] is simply the row in [A|b]
// NOTE(frank): we used to divide by a[i] but there is no need with a constraint
rd = Ab.row(*constraint_row);
// Construct solution (r, d, sigma)
Rd.push_back(std::make_tuple(j, rd, kInfinity));
// exit after rank exhausted
if (Rd.size() >= maxRank)
break;
// The constraint row will be zeroed out, so we can save work by swapping in the
// last valid row and decreasing m. This will save work on subsequent down-dates, too.
m -= 1;
if (*constraint_row != m) {
Ab.row(*constraint_row) = Ab.row(m);
weights(*constraint_row) = weights(m);
invsigmas(*constraint_row) = invsigmas(m);
}
// get a reduced a-column which is now shorter
Eigen::Block<Matrix> a_reduced = Ab.block(0, j, m, 1);
a_reduced *= (1.0/rd(0, j)); // NOTE(frank): this is the 1/a[i] = 1/rd(0,j) factor we need!
// Rank-1 down-date of Ab, expensive, using outer product
Ab.block(0, j + 1, m, n - j).noalias() -= a_reduced * rd.middleCols(j + 1, n - j);
} else {
// Treat in normal Gram-Schmidt way
// Calculate weighted pseudo-inverse and corresponding precision
// Form psuedo-inverse inv(a'inv(Sigma)a)a'inv(Sigma)
// For diagonal Sigma, inv(Sigma) = diag(precisions)
double precision = 0;
Vector pseudo(m); // allocate storage for pseudo-inverse
for (size_t i = 0; i < m; i++) {
double ai = a(i, 0);
if (std::abs(ai) > 1e-9) { // also catches remaining sigma==0 rows
pseudo[i] = weights[i] * ai;
precision += pseudo[i] * ai;
} else
pseudo[i] = 0;
}
if (precision > 1e-8) {
pseudo /= precision;
// create solution [r d], rhs is automatically r(n)
rd(0, j) = 1.0; // put 1 on diagonal
rd.block(0, j + 1, 1, n - j) = pseudo.transpose() * Ab.block(0, j + 1, m, n - j);
// construct solution (r, d, sigma)
Rd.push_back(std::make_tuple(j, rd, precision));
} else {
// If precision is zero, no information on this column
// This is actually not limited to constraints, could happen in Gaussian::QR
// In that case, we're probably hosed. TODO: make sure Householder is rank-revealing
continue; // but even if not, no need to update if a==zeros
}
// exit after rank exhausted
if (Rd.size() >= maxRank)
break;
// Rank-1 down-date of Ab, expensive, using outer product
Ab.block(0, j + 1, m, n - j).noalias() -= a * rd.middleCols(j + 1, n - j);
}
}
// Create storage for precisions
Vector precisions(Rd.size());
// Write back result in Ab, imperative as we are
size_t i = 0; // start with first row
bool mixed = false;
Ab.setZero(); // make sure we don't look below
for (const Triple& t: Rd) {
const size_t& j = std::get<0>(t);
const Matrix& rd = std::get<1>(t);
precisions(i) = std::get<2>(t);
if (std::isinf(precisions(i)))
mixed = true;
Ab.block(i, j, 1, n + 1 - j) = rd.block(0, j, 1, n + 1 - j);
i += 1;
}
// Must include mu, as the defaults might be higher, resulting in non-convergence
return mixed ? Constrained::MixedPrecisions(mu_, precisions) : Diagonal::Precisions(precisions);
}
/* ************************************************************************* */
// Isotropic
/* ************************************************************************* */
Isotropic::shared_ptr Isotropic::Sigma(size_t dim, double sigma, bool smart) {
if (smart && std::abs(sigma-1.0)<1e-9) return Unit::Create(dim);
return shared_ptr(new Isotropic(dim, sigma));
}
/* ************************************************************************* */
Isotropic::shared_ptr Isotropic::Variance(size_t dim, double variance, bool smart) {
if (smart && std::abs(variance-1.0)<1e-9) return Unit::Create(dim);
return shared_ptr(new Isotropic(dim, sqrt(variance)));
}
/* ************************************************************************* */
void Isotropic::print(const string& name) const {
cout << "isotropic dim=" << dim() << " sigma=" << sigma_ << endl;
}
/* ************************************************************************* */
double Isotropic::squaredMahalanobisDistance(const Vector& v) const {
return v.dot(v) * invsigma_ * invsigma_;
}
/* ************************************************************************* */
Vector Isotropic::whiten(const Vector& v) const {
return v * invsigma_;
}
/* ************************************************************************* */
Vector Isotropic::unwhiten(const Vector& v) const {
return v * sigma_;
}
/* ************************************************************************* */
Matrix Isotropic::Whiten(const Matrix& H) const {
return invsigma_ * H;
}
/* ************************************************************************* */
void Isotropic::WhitenInPlace(Matrix& H) const {
H *= invsigma_;
}
/* ************************************************************************* */
void Isotropic::whitenInPlace(Vector& v) const {
v *= invsigma_;
}
/* ************************************************************************* */
void Isotropic::WhitenInPlace(Eigen::Block<Matrix> H) const {
H *= invsigma_;
}
/* *******************************************************************************/
double Isotropic::logDetR() const { return log(invsigma_) * dim(); }
/* ************************************************************************* */
// Unit
/* ************************************************************************* */
void Unit::print(const std::string& name) const {
cout << name << "unit (" << dim_ << ") " << endl;
}
/* ************************************************************************* */
double Unit::squaredMahalanobisDistance(const Vector& v) const {
return v.dot(v);
}
/* *******************************************************************************/
double Unit::logDetR() const { return 0.0; }
/* ************************************************************************* */
// Robust
/* ************************************************************************* */
void Robust::print(const std::string& name) const {
robust_->print(name);
noise_->print(name);
}
bool Robust::equals(const Base& expected, double tol) const {
const Robust* p = dynamic_cast<const Robust*> (&expected);
if (p == nullptr) return false;
return noise_->equals(*p->noise_,tol) && robust_->equals(*p->robust_,tol);
}
void Robust::WhitenSystem(Vector& b) const {
noise_->whitenInPlace(b);
robust_->reweight(b);
}
void Robust::WhitenSystem(vector<Matrix>& A, Vector& b) const {
noise_->WhitenSystem(A,b);
robust_->reweight(A,b);
}
void Robust::WhitenSystem(Matrix& A, Vector& b) const {
noise_->WhitenSystem(A,b);
robust_->reweight(A,b);
}
void Robust::WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const {
noise_->WhitenSystem(A1,A2,b);
robust_->reweight(A1,A2,b);
}
void Robust::WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const{
noise_->WhitenSystem(A1,A2,A3,b);
robust_->reweight(A1,A2,A3,b);
}
Vector Robust::unweightedWhiten(const Vector& v) const {
return noise_->unweightedWhiten(v);
}
double Robust::weight(const Vector& v) const {
return robust_->weight(v.norm());
}
Robust::shared_ptr Robust::Create(
const RobustModel::shared_ptr &robust, const NoiseModel::shared_ptr noise){
return shared_ptr(new Robust(robust,noise));
}
/* ************************************************************************* */
} // namespace noiseModel
} // gtsam