gtsam/gtsam/geometry/FundamentalMatrix.h

234 lines
7.6 KiB
C++

/*
* @file FundamentalMatrix.h
* @brief FundamentalMatrix classes
* @author Frank Dellaert
* @date October 2024
*/
#pragma once
#include <gtsam/base/OptionalJacobian.h>
#include <gtsam/geometry/EssentialMatrix.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Unit3.h>
namespace gtsam {
/**
* @class FundamentalMatrix
* @brief Represents a fundamental matrix in computer vision, which encodes the
* epipolar geometry between two views.
*
* The FundamentalMatrix class encapsulates the fundamental matrix, which
* relates corresponding points in stereo images. It is parameterized by two
* rotation matrices (U and V) and a scalar parameter (s).
* Using these values, the fundamental matrix is represented as
*
* F = U * diag(1, s, 0) * V^T
*/
class GTSAM_EXPORT FundamentalMatrix {
private:
Rot3 U_; ///< Left rotation
double s_; ///< Scalar parameter for S
Rot3 V_; ///< Right rotation
public:
/// Default constructor
FundamentalMatrix() : U_(Rot3()), s_(1.0), V_(Rot3()) {}
/**
* @brief Construct from U, V, and scalar s
*
* Initializes the FundamentalMatrix From the SVD representation
* U*diag(1,s,0)*V^T. It will internally convert to using SO(3).
*/
FundamentalMatrix(const Matrix3& U, double s, const Matrix3& V);
/**
* @brief Construct from a 3x3 matrix using SVD
*
* Initializes the FundamentalMatrix by performing SVD on the given
* matrix and ensuring U and V are not reflections.
*
* @param F A 3x3 matrix representing the fundamental matrix
*/
FundamentalMatrix(const Matrix3& F);
/**
* @brief Construct from essential matrix and calibration matrices
*
* Initializes the FundamentalMatrix from the given essential matrix E
* and calibration matrices Ka and Kb, using
* F = Ka^(-T) * E * Kb^(-1)
* and then calls constructor that decomposes F via SVD.
*
* @param E Essential matrix
* @param Ka Calibration matrix for the left camera
* @param Kb Calibration matrix for the right camera
*/
FundamentalMatrix(const Matrix3& Ka, const EssentialMatrix& E,
const Matrix3& Kb)
: FundamentalMatrix(Ka.transpose().inverse() * E.matrix() *
Kb.inverse()) {}
/**
* @brief Construct from calibration matrices Ka, Kb, and pose aPb
*
* Initializes the FundamentalMatrix from the given calibration
* matrices Ka and Kb, and the pose aPb.
*
* @param Ka Calibration matrix for the left camera
* @param aPb Pose from the left to the right camera
* @param Kb Calibration matrix for the right camera
*/
FundamentalMatrix(const Matrix3& Ka, const Pose3& aPb, const Matrix3& Kb)
: FundamentalMatrix(Ka, EssentialMatrix::FromPose3(aPb), Kb) {}
/// Return the fundamental matrix representation
Matrix3 matrix() const;
/// Computes the epipolar line in a (left) for a given point in b (right)
Vector3 epipolarLine(const Point2& p, OptionalJacobian<3, 7> H = {});
/// @name Testable
/// @{
/// Print the FundamentalMatrix
void print(const std::string& s = "") const;
/// Check if the FundamentalMatrix is equal to another within a
/// tolerance
bool equals(const FundamentalMatrix& other, double tol = 1e-9) const;
/// @}
/// @name Manifold
/// @{
enum { dimension = 7 }; // 3 for U, 1 for s, 3 for V
inline static size_t Dim() { return dimension; }
inline size_t dim() const { return dimension; }
/// Return local coordinates with respect to another FundamentalMatrix
Vector localCoordinates(const FundamentalMatrix& F) const;
/// Retract the given vector to get a new FundamentalMatrix
FundamentalMatrix retract(const Vector& delta) const;
/// @}
private:
/// Private constructor for internal use
FundamentalMatrix(const Rot3& U, double s, const Rot3& V)
: U_(U), s_(s), V_(V) {}
/// Initialize SO(3) matrices from general O(3) matrices
void initialize(Matrix3 U, double s, Matrix3 V);
};
/**
* @class SimpleFundamentalMatrix
* @brief Class for representing a simple fundamental matrix.
*
* This class represents a simple fundamental matrix, which is a
* parameterization of the essential matrix and focal lengths for left and right
* cameras. Principal points are not part of the manifold but a convenience.
*/
class GTSAM_EXPORT SimpleFundamentalMatrix {
private:
EssentialMatrix E_; ///< Essential matrix
double fa_; ///< Focal length for left camera
double fb_; ///< Focal length for right camera
Point2 ca_; ///< Principal point for left camera
Point2 cb_; ///< Principal point for right camera
/// Return the left calibration matrix
Matrix3 Ka() const;
/// Return the right calibration matrix
Matrix3 Kb() const;
public:
/// Default constructor
SimpleFundamentalMatrix()
: E_(), fa_(1.0), fb_(1.0), ca_(0.0, 0.0), cb_(0.0, 0.0) {}
/**
* @brief Construct from essential matrix and focal lengths
* @param E Essential matrix
* @param fa Focal length for left camera
* @param fb Focal length for right camera
* @param ca Principal point for left camera
* @param cb Principal point for right camera
*/
SimpleFundamentalMatrix(const EssentialMatrix& E, //
double fa, double fb, const Point2& ca,
const Point2& cb)
: E_(E), fa_(fa), fb_(fb), ca_(ca), cb_(cb) {}
/// Return the fundamental matrix representation
/// F = Ka^(-T) * E * Kb^(-1)
Matrix3 matrix() const;
/// Computes the epipolar line in a (left) for a given point in b (right)
Vector3 epipolarLine(const Point2& p, OptionalJacobian<3, 7> H = {});
/// @name Testable
/// @{
/// Print the SimpleFundamentalMatrix
void print(const std::string& s = "") const;
/// Check equality within a tolerance
bool equals(const SimpleFundamentalMatrix& other, double tol = 1e-9) const;
/// @}
/// @name Manifold
/// @{
enum { dimension = 7 }; // 5 for E, 1 for fa, 1 for fb
inline static size_t Dim() { return dimension; }
inline size_t dim() const { return dimension; }
/// Return local coordinates with respect to another SimpleFundamentalMatrix
Vector localCoordinates(const SimpleFundamentalMatrix& F) const;
/// Retract the given vector to get a new SimpleFundamentalMatrix
SimpleFundamentalMatrix retract(const Vector& delta) const;
/// @}
};
/**
* @brief Transfer projections from cameras a and b to camera c
*
* Take two fundamental matrices Fca and Fcb, and two points pa and pb, and
* returns the 2D point in view (c) where the epipolar lines intersect.
*/
GTSAM_EXPORT Point2 EpipolarTransfer(const Matrix3& Fca, const Point2& pa,
const Matrix3& Fcb, const Point2& pb);
/// Represents a set of three fundamental matrices for transferring points
/// between three cameras.
template <typename F>
struct TripleF {
F Fab, Fbc, Fca;
/// Transfers a point from cameras b,c to camera a.
Point2 transferToA(const Point2& pb, const Point2& pc) {
return EpipolarTransfer(Fab.matrix(), pb, Fca.matrix().transpose(), pc);
}
/// Transfers a point from camera a,c to camera b.
Point2 transferToB(const Point2& pa, const Point2& pc) {
return EpipolarTransfer(Fab.matrix().transpose(), pa, Fbc.matrix(), pc);
}
/// Transfers a point from cameras a,b to camera c.
Point2 transferToC(const Point2& pa, const Point2& pb) {
return EpipolarTransfer(Fca.matrix(), pa, Fbc.matrix().transpose(), pb);
}
};
template <>
struct traits<FundamentalMatrix>
: public internal::Manifold<FundamentalMatrix> {};
template <>
struct traits<SimpleFundamentalMatrix>
: public internal::Manifold<SimpleFundamentalMatrix> {};
} // namespace gtsam