71 lines
2.3 KiB
C++
71 lines
2.3 KiB
C++
/*
|
|
* SubgraphPreconditioner-inl.h
|
|
*
|
|
* Created on: Jan 17, 2010
|
|
* Author: nikai
|
|
* Description: subgraph preconditioning conjugate gradient solver
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include "SubgraphPreconditioner.h"
|
|
|
|
#include "graph-inl.h"
|
|
#include "iterative-inl.h"
|
|
#include "FactorGraph-inl.h"
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
template<class Graph, class Config>
|
|
SubgraphPCG<Graph, Config>::SubgraphPCG(const Graph& G, const Config& config) :
|
|
maxIterations_(100), verbose_(false), epsilon_(1e-4), epsilon_abs_(1e-5) {
|
|
|
|
// generate spanning tree and create ordering
|
|
PredecessorMap<Key> tree = G.template findMinimumSpanningTree<Key, Constraint>();
|
|
list<Key> keys = predecessorMap2Keys(tree);
|
|
|
|
// split the graph
|
|
if (verbose_) cout << "generating spanning tree and split the graph ...";
|
|
G.template split<Key, Constraint>(tree, T_, C_);
|
|
if (verbose_) cout << T_.size() << " and " << C_.size() << " factors" << endl;
|
|
|
|
// make the ordering
|
|
list<Symbol> symbols;
|
|
symbols.resize(keys.size());
|
|
std::transform(keys.begin(), keys.end(), symbols.begin(), key2symbol<Key>);
|
|
ordering_ = boost::shared_ptr<Ordering>(new Ordering(symbols));
|
|
|
|
// compose the approximate solution
|
|
Key root = keys.back();
|
|
theta_bar_ = composePoses<Graph, Constraint, Pose, Config> (T_, tree, config[root]);
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class Graph, class Config>
|
|
VectorConfig SubgraphPCG<Graph, Config>::linearizeAndOptimize(const Graph& g,
|
|
const Config& theta_bar, const Ordering& ordering) const {
|
|
|
|
//TODO: 3 is hard coded here
|
|
VectorConfig zeros;
|
|
BOOST_FOREACH(const Symbol& j, ordering) zeros.insert(j,zero(3));
|
|
|
|
// build the subgraph PCG system
|
|
GaussianFactorGraph Ab1 = T_.linearize(theta_bar);
|
|
GaussianFactorGraph Ab2 = C_.linearize(theta_bar);
|
|
const GaussianBayesNet Rc1 = Ab1.eliminate(ordering);
|
|
VectorConfig xbar = gtsam::optimize(Rc1);
|
|
SubgraphPreconditioner system(Rc1, Ab2, xbar);
|
|
|
|
// Solve the subgraph PCG
|
|
VectorConfig ybar = conjugateGradients<SubgraphPreconditioner, VectorConfig,
|
|
Errors> (system, zeros, verbose_, epsilon_, epsilon_abs_, maxIterations_);
|
|
VectorConfig xbar2 = system.x(ybar);
|
|
return xbar2;
|
|
}
|
|
}
|