361 lines
12 KiB
C++
361 lines
12 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file Hybrid_City10000.cpp
|
|
* @brief Example of using hybrid estimation
|
|
* with multiple odometry measurements.
|
|
* @author Varun Agrawal
|
|
* @date January 22, 2025
|
|
*/
|
|
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
|
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
|
#include <gtsam/hybrid/HybridSmoother.h>
|
|
#include <gtsam/hybrid/HybridValues.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/dataset.h>
|
|
#include <time.h>
|
|
|
|
#include <boost/algorithm/string/classification.hpp>
|
|
#include <boost/algorithm/string/split.hpp>
|
|
#include <cstdlib>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace gtsam;
|
|
using namespace boost::algorithm;
|
|
|
|
using symbol_shorthand::L;
|
|
using symbol_shorthand::M;
|
|
using symbol_shorthand::X;
|
|
|
|
auto kOpenLoopModel = noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10);
|
|
const double kOpenLoopConstant = kOpenLoopModel->negLogConstant();
|
|
|
|
auto kPriorNoiseModel = noiseModel::Diagonal::Sigmas(
|
|
(Vector(3) << 0.0001, 0.0001, 0.0001).finished());
|
|
|
|
auto kPoseNoiseModel = noiseModel::Diagonal::Sigmas(
|
|
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
|
|
const double kPoseNoiseConstant = kPoseNoiseModel->negLogConstant();
|
|
|
|
// Experiment Class
|
|
class Experiment {
|
|
public:
|
|
// Parameters with default values
|
|
size_t maxLoopCount = 3000;
|
|
|
|
// 3000: {1: 62s, 2: 21s, 3: 20s, 4: 31s, 5: 39s} No DT optimizations
|
|
// 3000: {1: 65s, 2: 20s, 3: 16s, 4: 21s, 5: 28s} With DT optimizations
|
|
// 3000: {1: 59s, 2: 19s, 3: 18s, 4: 26s, 5: 33s} With DT optimizations +
|
|
// merge
|
|
size_t updateFrequency = 3;
|
|
|
|
size_t maxNrHypotheses = 10;
|
|
|
|
size_t reLinearizationFrequency = 1;
|
|
|
|
private:
|
|
std::string filename_;
|
|
HybridSmoother smoother_;
|
|
HybridNonlinearFactorGraph newFactors_;
|
|
Values initial_;
|
|
|
|
/**
|
|
* @brief Write the result of optimization to file.
|
|
*
|
|
* @param result The Values object with the final result.
|
|
* @param num_poses The number of poses to write to the file.
|
|
* @param filename The file name to save the result to.
|
|
*/
|
|
void writeResult(const Values& result, size_t numPoses,
|
|
const std::string& filename = "Hybrid_city10000.txt") const {
|
|
std::ofstream outfile;
|
|
outfile.open(filename);
|
|
|
|
for (size_t i = 0; i < numPoses; ++i) {
|
|
Pose2 outPose = result.at<Pose2>(X(i));
|
|
outfile << outPose.x() << " " << outPose.y() << " " << outPose.theta()
|
|
<< std::endl;
|
|
}
|
|
outfile.close();
|
|
std::cout << "Output written to " << filename << std::endl;
|
|
}
|
|
|
|
/**
|
|
* @brief Create a hybrid loop closure factor where
|
|
* 0 - loose noise model and 1 - loop noise model.
|
|
*/
|
|
HybridNonlinearFactor hybridLoopClosureFactor(
|
|
size_t loopCounter, size_t keyS, size_t keyT,
|
|
const Pose2& measurement) const {
|
|
DiscreteKey l(L(loopCounter), 2);
|
|
|
|
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
|
|
X(keyS), X(keyT), measurement, kOpenLoopModel);
|
|
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
|
|
X(keyS), X(keyT), measurement, kPoseNoiseModel);
|
|
|
|
std::vector<NonlinearFactorValuePair> factors{{f0, kOpenLoopConstant},
|
|
{f1, kPoseNoiseConstant}};
|
|
HybridNonlinearFactor mixtureFactor(l, factors);
|
|
return mixtureFactor;
|
|
}
|
|
|
|
/// @brief Create hybrid odometry factor with discrete measurement choices.
|
|
HybridNonlinearFactor hybridOdometryFactor(
|
|
size_t numMeasurements, size_t keyS, size_t keyT, const DiscreteKey& m,
|
|
const std::vector<Pose2>& poseArray) const {
|
|
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
|
|
X(keyS), X(keyT), poseArray[0], kPoseNoiseModel);
|
|
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
|
|
X(keyS), X(keyT), poseArray[1], kPoseNoiseModel);
|
|
|
|
std::vector<NonlinearFactorValuePair> factors{{f0, kPoseNoiseConstant},
|
|
{f1, kPoseNoiseConstant}};
|
|
HybridNonlinearFactor mixtureFactor(m, factors);
|
|
return mixtureFactor;
|
|
}
|
|
|
|
/// @brief Perform smoother update and optimize the graph.
|
|
auto smootherUpdate(size_t maxNrHypotheses) {
|
|
gttic_(SmootherUpdate);
|
|
clock_t beforeUpdate = clock();
|
|
auto linearized = newFactors_.linearize(initial_);
|
|
smoother_.update(*linearized, maxNrHypotheses);
|
|
newFactors_.resize(0);
|
|
clock_t afterUpdate = clock();
|
|
return afterUpdate - beforeUpdate;
|
|
}
|
|
|
|
// Parse line from file
|
|
std::pair<std::vector<Pose2>, std::pair<size_t, size_t>> parseLine(
|
|
const std::string& line) const {
|
|
std::vector<std::string> parts;
|
|
split(parts, line, is_any_of(" "));
|
|
|
|
size_t keyS = stoi(parts[1]);
|
|
size_t keyT = stoi(parts[3]);
|
|
|
|
int numMeasurements = stoi(parts[5]);
|
|
std::vector<Pose2> poseArray(numMeasurements);
|
|
for (int i = 0; i < numMeasurements; ++i) {
|
|
double x = stod(parts[6 + 3 * i]);
|
|
double y = stod(parts[7 + 3 * i]);
|
|
double rad = stod(parts[8 + 3 * i]);
|
|
poseArray[i] = Pose2(x, y, rad);
|
|
}
|
|
return {poseArray, {keyS, keyT}};
|
|
}
|
|
|
|
public:
|
|
/// Construct with filename of experiment to run
|
|
explicit Experiment(const std::string& filename)
|
|
: filename_(filename), smoother_(0.99) {}
|
|
|
|
/// @brief Run the main experiment with a given maxLoopCount.
|
|
void run() {
|
|
// Prepare reading
|
|
std::ifstream in(filename_);
|
|
if (!in.is_open()) {
|
|
std::cerr << "Failed to open file: " << filename_ << std::endl;
|
|
return;
|
|
}
|
|
|
|
// Initialize local variables
|
|
size_t discreteCount = 0, index = 0, loopCount = 0, updateCount = 0;
|
|
|
|
std::list<double> timeList;
|
|
|
|
// Set up initial prior
|
|
Pose2 priorPose(0, 0, 0);
|
|
initial_.insert(X(0), priorPose);
|
|
newFactors_.push_back(
|
|
PriorFactor<Pose2>(X(0), priorPose, kPriorNoiseModel));
|
|
|
|
// Initial update
|
|
auto time = smootherUpdate(maxNrHypotheses);
|
|
std::vector<std::pair<size_t, double>> smootherUpdateTimes;
|
|
smootherUpdateTimes.push_back({index, time});
|
|
|
|
// Flag to decide whether to run smoother update
|
|
size_t numberOfHybridFactors = 0;
|
|
|
|
// Start main loop
|
|
Values result;
|
|
size_t keyS = 0, keyT = 0;
|
|
clock_t startTime = clock();
|
|
std::string line;
|
|
while (getline(in, line) && index < maxLoopCount) {
|
|
auto [poseArray, keys] = parseLine(line);
|
|
keyS = keys.first;
|
|
keyT = keys.second;
|
|
size_t numMeasurements = poseArray.size();
|
|
|
|
// Take the first one as the initial estimate
|
|
Pose2 odomPose = poseArray[0];
|
|
if (keyS == keyT - 1) {
|
|
// Odometry factor
|
|
if (numMeasurements > 1) {
|
|
// Add hybrid factor
|
|
DiscreteKey m(M(discreteCount), numMeasurements);
|
|
HybridNonlinearFactor mixtureFactor =
|
|
hybridOdometryFactor(numMeasurements, keyS, keyT, m, poseArray);
|
|
newFactors_.push_back(mixtureFactor);
|
|
discreteCount++;
|
|
numberOfHybridFactors += 1;
|
|
std::cout << "mixtureFactor: " << keyS << " " << keyT << std::endl;
|
|
} else {
|
|
newFactors_.add(BetweenFactor<Pose2>(X(keyS), X(keyT), odomPose,
|
|
kPoseNoiseModel));
|
|
}
|
|
// Insert next pose initial guess
|
|
initial_.insert(X(keyT), initial_.at<Pose2>(X(keyS)) * odomPose);
|
|
} else {
|
|
// Loop closure
|
|
HybridNonlinearFactor loopFactor =
|
|
hybridLoopClosureFactor(loopCount, keyS, keyT, odomPose);
|
|
// print loop closure event keys:
|
|
std::cout << "Loop closure: " << keyS << " " << keyT << std::endl;
|
|
newFactors_.add(loopFactor);
|
|
numberOfHybridFactors += 1;
|
|
loopCount++;
|
|
}
|
|
|
|
if (numberOfHybridFactors >= updateFrequency) {
|
|
// print the keys involved in the smoother update
|
|
std::cout << "Smoother update: " << newFactors_.size() << std::endl;
|
|
auto time = smootherUpdate(maxNrHypotheses);
|
|
smootherUpdateTimes.push_back({index, time});
|
|
numberOfHybridFactors = 0;
|
|
updateCount++;
|
|
|
|
if (updateCount % reLinearizationFrequency == 0) {
|
|
std::cout << "Re-linearizing: " << newFactors_.size() << std::endl;
|
|
HybridValues delta = smoother_.optimize();
|
|
result.insert_or_assign(initial_.retract(delta.continuous()));
|
|
}
|
|
}
|
|
|
|
// Record timing for odometry edges only
|
|
if (keyS == keyT - 1) {
|
|
clock_t curTime = clock();
|
|
timeList.push_back(curTime - startTime);
|
|
}
|
|
|
|
// Print some status every 100 steps
|
|
if (index % 100 == 0) {
|
|
std::cout << "Index: " << index << std::endl;
|
|
if (!timeList.empty()) {
|
|
std::cout << "Acc_time: " << timeList.back() / CLOCKS_PER_SEC
|
|
<< " seconds" << std::endl;
|
|
// delta.discrete().print("The Discrete Assignment");
|
|
tictoc_finishedIteration_();
|
|
tictoc_print_();
|
|
}
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
// Final update
|
|
time = smootherUpdate(maxNrHypotheses);
|
|
smootherUpdateTimes.push_back({index, time});
|
|
|
|
// Final optimize
|
|
gttic_(HybridSmootherOptimize);
|
|
HybridValues delta = smoother_.optimize();
|
|
gttoc_(HybridSmootherOptimize);
|
|
|
|
result.insert_or_assign(initial_.retract(delta.continuous()));
|
|
|
|
std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta)
|
|
<< std::endl;
|
|
|
|
clock_t endTime = clock();
|
|
clock_t totalTime = endTime - startTime;
|
|
std::cout << "Total time: " << totalTime / CLOCKS_PER_SEC << " seconds"
|
|
<< std::endl;
|
|
|
|
// Write results to file
|
|
writeResult(result, keyT + 1, "Hybrid_City10000.txt");
|
|
|
|
// TODO Write to file
|
|
// for (size_t i = 0; i < smoother_update_times.size(); i++) {
|
|
// auto p = smoother_update_times.at(i);
|
|
// std::cout << p.first << ", " << p.second / CLOCKS_PER_SEC <<
|
|
// std::endl;
|
|
// }
|
|
|
|
// Write timing info to file
|
|
std::ofstream outfileTime;
|
|
std::string timeFileName = "Hybrid_City10000_time.txt";
|
|
outfileTime.open(timeFileName);
|
|
for (auto accTime : timeList) {
|
|
outfileTime << accTime << std::endl;
|
|
}
|
|
outfileTime.close();
|
|
std::cout << "Output " << timeFileName << " file." << std::endl;
|
|
}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
// Function to parse command-line arguments
|
|
void parseArguments(int argc, char* argv[], size_t& maxLoopCount,
|
|
size_t& updateFrequency, size_t& maxNrHypotheses) {
|
|
for (int i = 1; i < argc; ++i) {
|
|
std::string arg = argv[i];
|
|
if (arg == "--max-loop-count" && i + 1 < argc) {
|
|
maxLoopCount = std::stoul(argv[++i]);
|
|
} else if (arg == "--update-frequency" && i + 1 < argc) {
|
|
updateFrequency = std::stoul(argv[++i]);
|
|
} else if (arg == "--max-nr-hypotheses" && i + 1 < argc) {
|
|
maxNrHypotheses = std::stoul(argv[++i]);
|
|
} else if (arg == "--help") {
|
|
std::cout << "Usage: " << argv[0] << " [options]\n"
|
|
<< "Options:\n"
|
|
<< " --max-loop-count <value> Set the maximum loop "
|
|
"count (default: 3000)\n"
|
|
<< " --update-frequency <value> Set the update frequency "
|
|
"(default: 3)\n"
|
|
<< " --max-nr-hypotheses <value> Set the maximum number of "
|
|
"hypotheses (default: 10)\n"
|
|
<< " --help Show this help message\n";
|
|
std::exit(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Main function
|
|
int main(int argc, char* argv[]) {
|
|
Experiment experiment(findExampleDataFile("T1_city10000_04.txt"));
|
|
// Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only
|
|
// Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only
|
|
// Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 +
|
|
// Type #3
|
|
|
|
// Parse command-line arguments
|
|
parseArguments(argc, argv, experiment.maxLoopCount,
|
|
experiment.updateFrequency, experiment.maxNrHypotheses);
|
|
|
|
// Run the experiment
|
|
experiment.run();
|
|
|
|
return 0;
|
|
} |