171 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/** 
 | 
						|
 * @file    testNonlinearFactorGraph.cpp
 | 
						|
 * @brief   Unit tests for Non-Linear Factor NonlinearFactorGraph
 | 
						|
 * @brief   testNonlinearFactorGraph
 | 
						|
 * @author  Carlos Nieto
 | 
						|
 * @author  Christian Potthast
 | 
						|
 */
 | 
						|
 | 
						|
/*STL/C++*/
 | 
						|
#include <iostream>
 | 
						|
using namespace std;
 | 
						|
 | 
						|
#include <boost/assign/std/list.hpp>
 | 
						|
#include <boost/assign/std/set.hpp>
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
 | 
						|
#include <gtsam/base/Testable.h>
 | 
						|
#include <gtsam/base/Matrix.h>
 | 
						|
#include <tests/smallExample.h>
 | 
						|
#include <gtsam/inference/FactorGraph.h>
 | 
						|
#include <gtsam/inference/Symbol.h>
 | 
						|
#include <gtsam/symbolic/SymbolicFactorGraph.h>
 | 
						|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | 
						|
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
using symbol_shorthand::X;
 | 
						|
using symbol_shorthand::L;
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, equals )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | 
						|
  NonlinearFactorGraph fg2 = createNonlinearFactorGraph();
 | 
						|
  CHECK( fg.equals(fg2) );
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, error )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | 
						|
  Values c1 = createValues();
 | 
						|
  double actual1 = fg.error(c1);
 | 
						|
  DOUBLES_EQUAL( 0.0, actual1, 1e-9 );
 | 
						|
 | 
						|
  Values c2 = createNoisyValues();
 | 
						|
  double actual2 = fg.error(c2);
 | 
						|
  DOUBLES_EQUAL( 5.625, actual2, 1e-9 );
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, keys )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | 
						|
  KeySet actual = fg.keys();
 | 
						|
  LONGS_EQUAL(3, (long)actual.size());
 | 
						|
  KeySet::const_iterator it = actual.begin();
 | 
						|
  LONGS_EQUAL((long)L(1), (long)*(it++));
 | 
						|
  LONGS_EQUAL((long)X(1), (long)*(it++));
 | 
						|
  LONGS_EQUAL((long)X(2), (long)*(it++));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, GET_ORDERING)
 | 
						|
{
 | 
						|
  Ordering expected; expected += L(1), X(2), X(1); // For starting with l1,x1,x2
 | 
						|
  NonlinearFactorGraph nlfg = createNonlinearFactorGraph();
 | 
						|
  Ordering actual = Ordering::Colamd(nlfg);
 | 
						|
  EXPECT(assert_equal(expected,actual));
 | 
						|
 | 
						|
  // Constrained ordering - put x2 at the end
 | 
						|
  Ordering expectedConstrained; expectedConstrained += L(1), X(1), X(2);
 | 
						|
  FastMap<Key, int> constraints;
 | 
						|
  constraints[X(2)] = 1;
 | 
						|
  Ordering actualConstrained = Ordering::ColamdConstrained(nlfg, constraints);
 | 
						|
  EXPECT(assert_equal(expectedConstrained, actualConstrained));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, probPrime )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | 
						|
  Values cfg = createValues();
 | 
						|
 | 
						|
  // evaluate the probability of the factor graph
 | 
						|
  double actual = fg.probPrime(cfg);
 | 
						|
  double expected = 1.0;
 | 
						|
  DOUBLES_EQUAL(expected,actual,0);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, linearize )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | 
						|
  Values initial = createNoisyValues();
 | 
						|
  GaussianFactorGraph linearized = *fg.linearize(initial);
 | 
						|
  GaussianFactorGraph expected = createGaussianFactorGraph();
 | 
						|
  CHECK(assert_equal(expected,linearized)); // Needs correct linearizations
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, clone )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph fg = createNonlinearFactorGraph();
 | 
						|
  NonlinearFactorGraph actClone = fg.clone();
 | 
						|
  EXPECT(assert_equal(fg, actClone));
 | 
						|
  for (size_t i=0; i<fg.size(); ++i)
 | 
						|
    EXPECT(fg[i] != actClone[i]);
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, rekey )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph init = createNonlinearFactorGraph();
 | 
						|
  map<Key,Key> rekey_mapping;
 | 
						|
  rekey_mapping.insert(make_pair(L(1), L(4)));
 | 
						|
  NonlinearFactorGraph actRekey = init.rekey(rekey_mapping);
 | 
						|
 | 
						|
  // ensure deep clone
 | 
						|
  LONGS_EQUAL((long)init.size(), (long)actRekey.size());
 | 
						|
  for (size_t i=0; i<init.size(); ++i)
 | 
						|
      EXPECT(init[i] != actRekey[i]);
 | 
						|
 | 
						|
  NonlinearFactorGraph expRekey;
 | 
						|
  // original measurements
 | 
						|
  expRekey.push_back(init[0]);
 | 
						|
  expRekey.push_back(init[1]);
 | 
						|
 | 
						|
  // updated measurements
 | 
						|
  Point2 z3(0, -1),  z4(-1.5, -1.);
 | 
						|
  SharedDiagonal sigma0_2 = noiseModel::Isotropic::Sigma(2,0.2);
 | 
						|
  expRekey += simulated2D::Measurement(z3, sigma0_2, X(1), L(4));
 | 
						|
  expRekey += simulated2D::Measurement(z4, sigma0_2, X(2), L(4));
 | 
						|
 | 
						|
  EXPECT(assert_equal(expRekey, actRekey));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( NonlinearFactorGraph, symbolic )
 | 
						|
{
 | 
						|
  NonlinearFactorGraph graph = createNonlinearFactorGraph();
 | 
						|
 | 
						|
  SymbolicFactorGraph expected;
 | 
						|
  expected.push_factor(X(1));
 | 
						|
  expected.push_factor(X(1), X(2));
 | 
						|
  expected.push_factor(X(1), L(1));
 | 
						|
  expected.push_factor(X(2), L(1));
 | 
						|
 | 
						|
  SymbolicFactorGraph actual = *graph.symbolic();
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | 
						|
/* ************************************************************************* */
 |