459 lines
12 KiB
C++
459 lines
12 KiB
C++
/**
|
|
* @file testMatrix.cpp
|
|
* @brief Unit test for Matrix Library
|
|
* @author Christian Potthast
|
|
* @author Carlos Nieto
|
|
**/
|
|
|
|
#include <iostream>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include "Matrix.h"
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, constructor_data )
|
|
{
|
|
double data[] = {-5, 3,
|
|
0, -5 };
|
|
Matrix A = Matrix_(2,2,data);
|
|
|
|
Matrix B(2,2);
|
|
B(0,0) = -5 ; B(0,1) = 3;
|
|
B(1,0) = 0 ; B(1,1) = -5;
|
|
|
|
EQUALITY(A,B);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST( matrix, constructor_vector )
|
|
{
|
|
double data[] = {-5, 3,
|
|
0, -5 };
|
|
Matrix A = Matrix_(2,2,data);
|
|
Vector v(4); copy(data,data+4,v.begin());
|
|
Matrix B = Matrix_(2,2,v); // this one is column order !
|
|
EQUALITY(A,trans(B));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, Matrix_ )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
-5.0 , 3.0,
|
|
00.0, -5.0 );
|
|
Matrix B(2,2);
|
|
B(0,0) = -5 ; B(0,1) = 3;
|
|
B(1,0) = 0 ; B(1,1) = -5;
|
|
|
|
EQUALITY(A,B);
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, row_major )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
1.0, 2.0,
|
|
3.0, 4.0 );
|
|
const double * const a = &A(0,0);
|
|
CHECK(a[0] == 1);
|
|
CHECK(a[1] == 2);
|
|
CHECK(a[2] == 3);
|
|
CHECK(a[3] == 4);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, collect )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
-5.0 , 3.0,
|
|
00.0, -5.0 );
|
|
Matrix B = Matrix_(2,3,
|
|
-0.5 , 2.1, 1.1,
|
|
3.4 , 2.6 , 7.1);
|
|
Matrix AB = collect(2, &A, &B);
|
|
Matrix C(2,5);
|
|
for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) C(i,j) = A(i,j);
|
|
for(int i = 0; i < 2; i++) for(int j = 0; j < 3; j++) C(i,j+2) = B(i,j);
|
|
|
|
EQUALITY(C,AB);
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, stack )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
-5.0 , 3.0,
|
|
00.0, -5.0 );
|
|
Matrix B = Matrix_(3,2,
|
|
-0.5 , 2.1,
|
|
1.1, 3.4 ,
|
|
2.6 , 7.1);
|
|
Matrix AB = stack(2, &A, &B);
|
|
Matrix C(5,2);
|
|
for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) C(i,j) = A(i,j);
|
|
for(int i = 0; i < 3; i++) for(int j = 0; j < 2; j++) C(i+2,j) = B(i,j);
|
|
|
|
EQUALITY(C,AB);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, zeros )
|
|
{
|
|
Matrix A(2,3);
|
|
A(0,0) = 0 ; A(0,1) = 0; A(0,2) = 0;
|
|
A(1,0) = 0 ; A(1,1) = 0; A(1,2) = 0;
|
|
|
|
Matrix zero = zeros(2,3);
|
|
|
|
EQUALITY(A , zero);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, equal )
|
|
{
|
|
Matrix A(4,4);
|
|
A(0,0) = -1; A(0,1) = 1; A(0,2)= 2; A(0,3)= 3;
|
|
A(1,0) = 1; A(1,1) =-3; A(1,2)= 1; A(1,3)= 3;
|
|
A(2,0) = 1; A(2,1) = 2; A(2,2)=-1; A(2,3)= 4;
|
|
A(3,0) = 2; A(3,1) = 1; A(3,2)= 2; A(3,3)=-2;
|
|
|
|
Matrix A2(A);
|
|
|
|
Matrix A3(A);
|
|
A3(3,3)=-2.1;
|
|
|
|
CHECK(A==A2);
|
|
CHECK(A!=A3);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, addition )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
1.0, 2.0,
|
|
3.0, 4.0);
|
|
Matrix B = Matrix_(2,2,
|
|
4.0, 3.0,
|
|
2.0, 1.0);
|
|
Matrix C = Matrix_(2,2,
|
|
5.0, 5.0,
|
|
5.0, 5.0);
|
|
EQUALITY(A+B,C);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, addition_in_place )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
1.0, 2.0,
|
|
3.0, 4.0);
|
|
Matrix B = Matrix_(2,2,
|
|
4.0, 3.0,
|
|
2.0, 1.0);
|
|
Matrix C = Matrix_(2,2,
|
|
5.0, 5.0,
|
|
5.0, 5.0);
|
|
A += B;
|
|
EQUALITY(A,C);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, subtraction )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
1.0, 2.0,
|
|
3.0, 4.0);
|
|
Matrix B = Matrix_(2,2,
|
|
4.0, 3.0,
|
|
2.0, 1.0);
|
|
Matrix C = Matrix_(2,2,
|
|
-3.0, -1.0,
|
|
1.0, 3.0);
|
|
EQUALITY(A-B,C);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, subtraction_in_place )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
1.0, 2.0,
|
|
3.0, 4.0);
|
|
Matrix B = Matrix_(2,2,
|
|
4.0, 3.0,
|
|
2.0, 1.0);
|
|
Matrix C = Matrix_(2,2,
|
|
-3.0, -1.0,
|
|
1.0, 3.0);
|
|
A -= B;
|
|
EQUALITY(A,C);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, multiplication )
|
|
{
|
|
Matrix A(2,2);
|
|
A(0,0) = -1; A(1,0) = 1;
|
|
A(0,1) = 1; A(1,1) =-3;
|
|
|
|
Matrix B(2,1);
|
|
B(0,0) = 1.2;
|
|
B(1,0) = 3.4;
|
|
|
|
Matrix AB(2,1);
|
|
AB(0,0) = 2.2;
|
|
AB(1,0) = -9.;
|
|
|
|
EQUALITY(A*B,AB);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, scalar_matrix_multiplication )
|
|
{
|
|
Vector result(2);
|
|
|
|
Matrix A(2,2);
|
|
A(0,0) = -1; A(1,0) = 1;
|
|
A(0,1) = 1; A(1,1) =-3;
|
|
|
|
Matrix B(2,2);
|
|
B(0,0) = -10; B(1,0) = 10;
|
|
B(0,1) = 10; B(1,1) =-30;
|
|
|
|
EQUALITY((10*A),B);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, matrix_vector_multiplication )
|
|
{
|
|
Vector result(2);
|
|
|
|
Matrix A = Matrix_(2,3,
|
|
1.0,2.0,3.0,
|
|
4.0,5.0,6.0
|
|
);
|
|
Vector v(3);
|
|
v(0) = 1.0;
|
|
v(1) = 2.0;
|
|
v(2) = 3.0;
|
|
|
|
Vector Av(2);
|
|
Av(0) = 14.0;
|
|
Av(1) = 32.0;
|
|
|
|
EQUALITY(A*v,Av);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, nrRowsAndnrCols )
|
|
{
|
|
Matrix A(3,6);
|
|
LONGS_EQUAL( A.size1() , 3 );
|
|
LONGS_EQUAL( A.size2() , 6 );
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, scalar_divide )
|
|
{
|
|
Matrix A(2,2);
|
|
A(0,0) = 10; A(1,0) = 30;
|
|
A(0,1) = 20; A(1,1) = 40;
|
|
|
|
Matrix B(2,2);
|
|
B(0,0) = 1; B(1,0) = 3;
|
|
B(0,1) = 2; B(1,1) = 4;
|
|
|
|
EQUALITY(B,A/10);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, inverse )
|
|
{
|
|
Matrix A(3,3);
|
|
A(0,0)= 1; A(0,1)=2; A(0,2)=3;
|
|
A(1,0)= 0; A(1,1)=4; A(1,2)=5;
|
|
A(2,0)= 1; A(2,1)=0; A(2,2)=6;
|
|
|
|
Matrix Ainv = inverse(A);
|
|
|
|
Matrix expected(3,3);
|
|
expected(0,0)= 1.0909; expected(0,1)=-0.5454; expected(0,2)=-0.0909;
|
|
expected(1,0)= 0.2272; expected(1,1)= 0.1363; expected(1,2)=-0.2272;
|
|
expected(2,0)= -0.1818; expected(2,1)= 0.0909; expected(2,2)=0.1818;
|
|
|
|
CHECK(assert_equal(expected, Ainv, 1e-4));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/* unit test for backsubstitution */
|
|
/* ************************************************************************* */
|
|
TEST( matrix, backsubtitution )
|
|
{
|
|
// TEST ONE 2x2 matrix
|
|
Vector expectedA(2);
|
|
expectedA(0) = 3.6250 ; expectedA(1) = -0.75;
|
|
|
|
// create a 2x2 matrix
|
|
double dataA[] = {2, 3,
|
|
0, 4 };
|
|
Matrix A = Matrix_(2,2,dataA);
|
|
Vector Ab(2); Ab(0) = 5; Ab(1) = -3;
|
|
|
|
CHECK( assert_equal(expectedA , backsubstitution(A, Ab), 0.000001));
|
|
|
|
// TEST TWO 3x3 matrix
|
|
Vector expectedB(3);
|
|
expectedB(0) = 5.5 ; expectedB(1) = -8.5; expectedB(2) = 5;
|
|
|
|
|
|
// create a 3x3 matrix
|
|
double dataB[] = { 3, 5, 6,
|
|
0, 2, 3,
|
|
0, 0, 1 };
|
|
Matrix B = Matrix_(3,3,dataB);
|
|
|
|
Vector Bb(3);
|
|
Bb(0) = 4; Bb(1) = -2; Bb(2) = 5;
|
|
|
|
CHECK( assert_equal(expectedB , backsubstitution(B, Bb), 0.000001));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// unit tests for housholder transformation
|
|
/* ************************************************************************* */
|
|
TEST( matrix, houseHolder )
|
|
{
|
|
double data[] = {-5, 0, 5, 0, 0, 0, -1,
|
|
00, -5, 0, 5, 0, 0, 1.5,
|
|
10, 0, 0, 0,-10, 0, 2,
|
|
00, 10, 0, 0, 0,-10, -1};
|
|
|
|
// check in-place householder, with v vectors below diagonal
|
|
double data1[] = {0011.1803, 0, -2.2361, 0, -8.9443, 0, 2.236,
|
|
000000000, 11.1803, 0, -2.2361, 0, -8.9443, -1.565,
|
|
-0.618034, 0, 4.4721, 0, -4.4721, 0, 0,
|
|
000000000,-0.618034, 0, 4.4721, 0, -4.4721, 0.894};
|
|
Matrix expected1 = Matrix_(4,7, data1);
|
|
Matrix A1 = Matrix_(4, 7, data);
|
|
householder_(A1,3);
|
|
CHECK(assert_equal(expected1, A1, 1e-3));
|
|
|
|
// in-place, with zeros below diagonal
|
|
double data2[] = {0011.1803, 0, -2.2361, 0, -8.9443, 0, 2.236,
|
|
000000000, 11.1803, 0, -2.2361, 0, -8.9443, -1.565,
|
|
000000000, 0, 4.4721, 0, -4.4721, 0, 0,
|
|
000000000, 0, 0, 4.4721, 0, -4.4721, 0.894};
|
|
Matrix expected = Matrix_(4,7, data2);
|
|
Matrix A2 = Matrix_(4, 7, data);
|
|
householder(A2,3);
|
|
CHECK(assert_equal(expected, A2, 1e-3));
|
|
}
|
|
/* ************************************************************************* */
|
|
// unit test for qr factorization (and hence householder)
|
|
// This behaves the same as QR in matlab: [Q,R] = qr(A), except for signs
|
|
/* ************************************************************************* */
|
|
TEST( matrix, qr )
|
|
{
|
|
double data[] = {-5, 0, 5, 0,
|
|
00, -5, 0, 5,
|
|
10, 0, 0, 0,
|
|
00, 10, 0, 0,
|
|
00, 0, 0,-10,
|
|
10, 0,-10, 0};
|
|
Matrix A = Matrix_(6, 4, data);
|
|
|
|
double dataQ[] = {
|
|
-0.3333, 0, 0.2981, 0, 0, -0.8944,
|
|
0000000, -0.4472, 0, 0.3651, -0.8165, 0,
|
|
00.6667, 0, 0.7454, 0, 0, 0,
|
|
0000000, 0.8944, 0, 0.1826, -0.4082, 0,
|
|
0000000, 0, 0, -0.9129, -0.4082, 0,
|
|
00.6667, 0, -0.5963, 0, 0, -0.4472,
|
|
};
|
|
Matrix expectedQ = Matrix_(6,6, dataQ);
|
|
|
|
double dataR[] = {
|
|
15, 0, -8.3333, 0,
|
|
00, 11.1803, 0, -2.2361,
|
|
00, 0, 7.4536, 0,
|
|
00, 0, 0, 10.9545,
|
|
00, 0, 0, 0,
|
|
00, 0, 0, 0,
|
|
};
|
|
Matrix expectedR = Matrix_(6,4, dataR);
|
|
|
|
Matrix Q,R;
|
|
boost::tie(Q,R) = qr(A);
|
|
CHECK(assert_equal(expectedQ, Q, 1e-4));
|
|
CHECK(assert_equal(expectedR, R, 1e-4));
|
|
CHECK(assert_equal(A, Q*R, 1e-14));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, sub )
|
|
{
|
|
double data1[] = {
|
|
-5, 0, 5, 0, 0, 0,
|
|
00, -5, 0, 5, 0, 0,
|
|
10, 0, 0, 0,-10, 0,
|
|
00, 10, 0, 0, 0,-10
|
|
};
|
|
Matrix A = Matrix_(4,6, data1);
|
|
Matrix actual = sub(A,1,3,1,5);
|
|
|
|
double data2[] = {
|
|
-5, 0, 5, 0,
|
|
00, 0, 0,-10,
|
|
};
|
|
Matrix expected = Matrix_(2,4, data2);
|
|
|
|
EQUALITY(actual,expected);
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, trans )
|
|
{
|
|
Matrix A = Matrix_(2,2,
|
|
1.0 ,3.0,
|
|
2.0, 4.0 );
|
|
Matrix B = Matrix_(2,2,
|
|
1.0 ,2.0,
|
|
3.0, 4.0 );
|
|
EQUALITY(trans(A),B);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( matrix, row_major_access )
|
|
{
|
|
Matrix A = Matrix_(2,2,1.0,2.0,3.0,4.0);
|
|
const double* a = &A(0,0);
|
|
DOUBLES_EQUAL(3,a[2],1e-9);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
TEST( matrix, svd )
|
|
{
|
|
double data[] = {2,1,0};
|
|
Vector v(3); copy(data,data+3,v.begin());
|
|
Matrix U1=eye(4,3), S1=diag(v), V1=eye(3,3), A=(U1*S1)*Matrix(trans(V1));
|
|
Matrix U,V;
|
|
Vector s;
|
|
svd(A,U,s,V);
|
|
Matrix S=diag(s);
|
|
EQUALITY(U*S*Matrix(trans(V)),A);
|
|
EQUALITY(S,S1);
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|