gtsam/python/gtsam_examples/ImuFactorExample.py

124 lines
4.5 KiB
Python

"""
A script validating the ImuFactor inference.
"""
from __future__ import print_function
import math
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gtsam
from gtsam_utils import plotPose3
from PreintegrationExample import PreintegrationExample, POSES_FIG
# shorthand symbols:
BIAS_KEY = int(gtsam.Symbol('b', 0))
V = lambda j: int(gtsam.Symbol('v', j))
X = lambda i: int(gtsam.Symbol('x', i))
np.set_printoptions(precision=3, suppress=True)
class ImuFactorExample(PreintegrationExample):
def __init__(self):
self.velocity = np.array([2, 0, 0])
self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1)
self.velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
# Choose one of these twists to change scenario:
zero_twist = (np.zeros(3), np.zeros(3))
forward_twist = (np.zeros(3), self.velocity)
loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity)
sick_twist = (np.array([math.radians(30), -math.radians(30), 0]), self.velocity)
accBias = np.array([-0.3, 0.1, 0.2])
gyroBias = np.array([0.1, 0.3, -0.1])
bias = gtsam.ConstantBias(accBias, gyroBias)
dt = 1e-2
super(ImuFactorExample, self).__init__(sick_twist, bias, dt)
def addPrior(self, i, graph):
state = self.scenario.navState(i)
graph.push_back(gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise))
graph.push_back(gtsam.PriorFactorVector3(V(i), state.velocity(), self.velNoise))
def run(self):
graph = gtsam.NonlinearFactorGraph()
# initialize data structure for pre-integrated IMU measurements
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
H9 = gtsam.OptionalJacobian9();
T = 12
num_poses = T + 1 # assumes 1 factor per second
initial = gtsam.Values()
initial.insert(BIAS_KEY, self.actualBias)
for i in range(num_poses):
state_i = self.scenario.navState(float(i))
initial.insert(X(i), state_i.pose())
initial.insert(V(i), state_i.velocity())
# simulate the loop
i = 0 # state index
actual_state_i = self.scenario.navState(0)
for k, t in enumerate(np.arange(0, T, self.dt)):
# get measurements and add them to PIM
measuredOmega = self.runner.measuredAngularVelocity(t)
measuredAcc = self.runner.measuredSpecificForce(t)
pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt)
# Plot IMU many times
if k % 10 == 0:
self.plotImu(t, measuredOmega, measuredAcc)
# Plot every second
if k % int(1 / self.dt) == 0:
self.plotGroundTruthPose(t)
# create IMU factor every second
if (k + 1) % int(1 / self.dt) == 0:
factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1), BIAS_KEY, pim)
graph.push_back(factor)
if True:
print(factor)
H2 = gtsam.OptionalJacobian96();
print(pim.predict(actual_state_i, self.actualBias, H9, H2))
pim.resetIntegration()
actual_state_i = self.scenario.navState(t + self.dt)
i += 1
# add priors on beginning and end
self.addPrior(0, graph)
self.addPrior(num_poses - 1, graph)
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
params.setVerbosityLM("SUMMARY")
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
# Calculate and print marginal covariances
marginals = gtsam.Marginals(graph, result)
print("Covariance on bias:\n", marginals.marginalCovariance(BIAS_KEY))
for i in range(num_poses):
print("Covariance on pose {}:\n{}\n".format(i, marginals.marginalCovariance(X(i))))
print("Covariance on vel {}:\n{}\n".format(i, marginals.marginalCovariance(V(i))))
# Plot resulting poses
i = 0
while result.exists(X(i)):
pose_i = result.atPose3(X(i))
plotPose3(POSES_FIG, pose_i, 0.1)
i += 1
print(result.atConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
if __name__ == '__main__':
ImuFactorExample().run()