gtsam/gtsam/nonlinear/NonlinearFactorGraph.cpp

398 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file NonlinearFactorGraph.cpp
* @brief Factor Graph Consisting of non-linear factors
* @author Frank Dellaert
* @author Carlos Nieto
* @author Christian Potthast
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/symbolic/SymbolicFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/linearExceptions.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/FactorGraph-inst.h>
#include <gtsam/config.h> // for GTSAM_USE_TBB
#ifdef GTSAM_USE_TBB
# include <tbb/parallel_for.h>
#endif
#include <algorithm>
#include <cmath>
#include <fstream>
#include <set>
using namespace std;
namespace gtsam {
// Instantiate base classes
template class FactorGraph<NonlinearFactor>;
/* ************************************************************************* */
double NonlinearFactorGraph::probPrime(const Values& values) const {
// NOTE the 0.5 constant is handled by the factor error.
return exp(-error(values));
}
/* ************************************************************************* */
void NonlinearFactorGraph::print(const std::string& str, const KeyFormatter& keyFormatter) const {
cout << str << "size: " << size() << endl << endl;
for (size_t i = 0; i < factors_.size(); i++) {
stringstream ss;
ss << "Factor " << i << ": ";
if (factors_[i] != nullptr) {
factors_[i]->print(ss.str(), keyFormatter);
cout << "\n";
} else {
cout << ss.str() << "nullptr\n";
}
}
std::cout.flush();
}
/* ************************************************************************* */
void NonlinearFactorGraph::printErrors(const Values& values, const std::string& str,
const KeyFormatter& keyFormatter,
const std::function<bool(const Factor* /*factor*/, double /*whitenedError*/, size_t /*index*/)>& printCondition) const
{
cout << str << "size: " << size() << endl
<< endl;
for (size_t i = 0; i < factors_.size(); i++) {
const sharedFactor& factor = factors_[i];
const double errorValue = (factor != nullptr ? factors_[i]->error(values) : .0);
if (!printCondition(factor.get(),errorValue,i))
continue; // User-provided filter did not pass
stringstream ss;
ss << "Factor " << i << ": ";
if (factor == nullptr) {
cout << "nullptr" << "\n";
} else {
factor->print(ss.str(), keyFormatter);
cout << "error = " << errorValue << "\n";
}
cout << "\n";
}
std::cout.flush();
}
/* ************************************************************************* */
bool NonlinearFactorGraph::equals(const NonlinearFactorGraph& other, double tol) const {
return Base::equals(other, tol);
}
/* ************************************************************************* */
void NonlinearFactorGraph::dot(std::ostream& os, const Values& values,
const KeyFormatter& keyFormatter,
const GraphvizFormatting& writer) const {
writer.graphPreamble(&os);
// Find bounds (imperative)
KeySet keys = this->keys();
Vector2 min = writer.findBounds(values, keys);
// Create nodes for each variable in the graph
for (Key key : keys) {
auto position = writer.variablePos(values, min, key);
writer.drawVariable(key, keyFormatter, position, &os);
}
os << "\n";
if (writer.mergeSimilarFactors) {
// Remove duplicate factors
std::set<KeyVector> structure;
for (const sharedFactor& factor : factors_) {
if (factor) {
KeyVector factorKeys = factor->keys();
std::sort(factorKeys.begin(), factorKeys.end());
structure.insert(factorKeys);
}
}
// Create factors and variable connections
size_t i = 0;
for (const KeyVector& factorKeys : structure) {
writer.processFactor(i++, factorKeys, keyFormatter, boost::none, &os);
}
} else {
// Create factors and variable connections
for (size_t i = 0; i < size(); ++i) {
const NonlinearFactor::shared_ptr& factor = at(i);
if (factor) {
const KeyVector& factorKeys = factor->keys();
writer.processFactor(i, factorKeys, keyFormatter,
writer.factorPos(min, i), &os);
}
}
}
os << "}\n";
std::flush(os);
}
/* ************************************************************************* */
std::string NonlinearFactorGraph::dot(const Values& values,
const KeyFormatter& keyFormatter,
const GraphvizFormatting& writer) const {
std::stringstream ss;
dot(ss, values, keyFormatter, writer);
return ss.str();
}
/* ************************************************************************* */
void NonlinearFactorGraph::saveGraph(const std::string& filename,
const Values& values,
const KeyFormatter& keyFormatter,
const GraphvizFormatting& writer) const {
std::ofstream of(filename);
dot(of, values, keyFormatter, writer);
of.close();
}
/* ************************************************************************* */
double NonlinearFactorGraph::error(const Values& values) const {
gttic(NonlinearFactorGraph_error);
double total_error = 0.;
// iterate over all the factors_ to accumulate the log probabilities
for(const sharedFactor& factor: factors_) {
if(factor)
total_error += factor->error(values);
}
return total_error;
}
/* ************************************************************************* */
Ordering NonlinearFactorGraph::orderingCOLAMD() const
{
return Ordering::Colamd(*this);
}
/* ************************************************************************* */
Ordering NonlinearFactorGraph::orderingCOLAMDConstrained(const FastMap<Key, int>& constraints) const
{
return Ordering::ColamdConstrained(*this, constraints);
}
/* ************************************************************************* */
SymbolicFactorGraph::shared_ptr NonlinearFactorGraph::symbolic() const
{
// Generate the symbolic factor graph
SymbolicFactorGraph::shared_ptr symbolic = boost::make_shared<SymbolicFactorGraph>();
symbolic->reserve(size());
for (const sharedFactor& factor: factors_) {
if(factor)
*symbolic += SymbolicFactor(*factor);
else
*symbolic += SymbolicFactorGraph::sharedFactor();
}
return symbolic;
}
/* ************************************************************************* */
namespace {
#ifdef GTSAM_USE_TBB
class _LinearizeOneFactor {
const NonlinearFactorGraph& nonlinearGraph_;
const Values& linearizationPoint_;
GaussianFactorGraph& result_;
public:
// Create functor with constant parameters
_LinearizeOneFactor(const NonlinearFactorGraph& graph,
const Values& linearizationPoint, GaussianFactorGraph& result) :
nonlinearGraph_(graph), linearizationPoint_(linearizationPoint), result_(result) {
}
// Operator that linearizes a given range of the factors
void operator()(const tbb::blocked_range<size_t>& blocked_range) const {
for (size_t i = blocked_range.begin(); i != blocked_range.end(); ++i) {
if (nonlinearGraph_[i] && nonlinearGraph_[i]->sendable())
result_[i] = nonlinearGraph_[i]->linearize(linearizationPoint_);
else
result_[i] = GaussianFactor::shared_ptr();
}
}
};
#endif
}
/* ************************************************************************* */
GaussianFactorGraph::shared_ptr NonlinearFactorGraph::linearize(const Values& linearizationPoint) const
{
gttic(NonlinearFactorGraph_linearize);
// create an empty linear FG
GaussianFactorGraph::shared_ptr linearFG = boost::make_shared<GaussianFactorGraph>();
#ifdef GTSAM_USE_TBB
linearFG->resize(size());
TbbOpenMPMixedScope threadLimiter; // Limits OpenMP threads since we're mixing TBB and OpenMP
// First linearize all sendable factors
tbb::parallel_for(tbb::blocked_range<size_t>(0, size()),
_LinearizeOneFactor(*this, linearizationPoint, *linearFG));
// Linearize all non-sendable factors
for(size_t i = 0; i < size(); i++) {
auto& factor = (*this)[i];
if(factor && !(factor->sendable())) {
(*linearFG)[i] = factor->linearize(linearizationPoint);
}
}
#else
linearFG->reserve(size());
// linearize all factors
for(const sharedFactor& factor: factors_) {
if(factor) {
(*linearFG) += factor->linearize(linearizationPoint);
} else
(*linearFG) += GaussianFactor::shared_ptr();
}
#endif
return linearFG;
}
/* ************************************************************************* */
static Scatter scatterFromValues(const Values& values) {
gttic(scatterFromValues);
Scatter scatter;
scatter.reserve(values.size());
// use "natural" ordering with keys taken from the initial values
for (const auto& key_dim : values.dims()) {
scatter.add(key_dim.first, key_dim.second);
}
return scatter;
}
/* ************************************************************************* */
static Scatter scatterFromValues(const Values& values, const Ordering& ordering) {
gttic(scatterFromValues);
Scatter scatter;
scatter.reserve(values.size());
// copy ordering into keys and lookup dimension in values, is O(n*log n)
for (Key key : ordering) {
const Value& value = values.at(key);
scatter.add(key, value.dim());
}
return scatter;
}
/* ************************************************************************* */
HessianFactor::shared_ptr NonlinearFactorGraph::linearizeToHessianFactor(
const Values& values, const Scatter& scatter, const Dampen& dampen) const {
// NOTE(frank): we are heavily leaning on friendship below
HessianFactor::shared_ptr hessianFactor(new HessianFactor(scatter));
// Initialize so we can rank-update below
hessianFactor->info_.setZero();
// linearize all factors straight into the Hessian
// TODO(frank): this saves on creating the graph, but still mallocs a gaussianFactor!
for (const sharedFactor& nonlinearFactor : factors_) {
if (nonlinearFactor) {
const auto& gaussianFactor = nonlinearFactor->linearize(values);
gaussianFactor->updateHessian(hessianFactor->keys_, &hessianFactor->info_);
}
}
if (dampen) dampen(hessianFactor);
return hessianFactor;
}
/* ************************************************************************* */
HessianFactor::shared_ptr NonlinearFactorGraph::linearizeToHessianFactor(
const Values& values, const Ordering& order, const Dampen& dampen) const {
gttic(NonlinearFactorGraph_linearizeToHessianFactor);
Scatter scatter = scatterFromValues(values, order);
return linearizeToHessianFactor(values, scatter, dampen);
}
/* ************************************************************************* */
HessianFactor::shared_ptr NonlinearFactorGraph::linearizeToHessianFactor(
const Values& values, const Dampen& dampen) const {
gttic(NonlinearFactorGraph_linearizeToHessianFactor);
Scatter scatter = scatterFromValues(values);
return linearizeToHessianFactor(values, scatter, dampen);
}
/* ************************************************************************* */
Values NonlinearFactorGraph::updateCholesky(const Values& values,
const Dampen& dampen) const {
gttic(NonlinearFactorGraph_updateCholesky);
auto hessianFactor = linearizeToHessianFactor(values, dampen);
VectorValues delta = hessianFactor->solve();
return values.retract(delta);
}
/* ************************************************************************* */
Values NonlinearFactorGraph::updateCholesky(const Values& values,
const Ordering& ordering,
const Dampen& dampen) const {
gttic(NonlinearFactorGraph_updateCholesky);
auto hessianFactor = linearizeToHessianFactor(values, ordering, dampen);
VectorValues delta = hessianFactor->solve();
return values.retract(delta);
}
/* ************************************************************************* */
NonlinearFactorGraph NonlinearFactorGraph::clone() const {
NonlinearFactorGraph result;
for (const sharedFactor& f : factors_) {
if (f)
result.push_back(f->clone());
else
result.push_back(sharedFactor()); // Passes on null factors so indices remain valid
}
return result;
}
/* ************************************************************************* */
NonlinearFactorGraph NonlinearFactorGraph::rekey(const std::map<Key,Key>& rekey_mapping) const {
NonlinearFactorGraph result;
for (const sharedFactor& f : factors_) {
if (f)
result.push_back(f->rekey(rekey_mapping));
else
result.push_back(sharedFactor());
}
return result;
}
/* ************************************************************************* */
} // namespace gtsam