356 lines
14 KiB
C++
356 lines
14 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SmartStereoProjectionFactorPP.h
|
|
* @brief Smart stereo factor on poses and extrinsic calibration
|
|
* @author Luca Carlone
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam_unstable/slam/SmartStereoProjectionFactor.h>
|
|
|
|
namespace gtsam {
|
|
/**
|
|
*
|
|
* @addtogroup SLAM
|
|
*
|
|
* If you are using the factor, please cite:
|
|
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert,
|
|
* Eliminating conditionally independent sets in factor graphs:
|
|
* a unifying perspective based on smart factors,
|
|
* Int. Conf. on Robotics and Automation (ICRA), 2014.
|
|
*/
|
|
|
|
/**
|
|
* This factor optimizes the extrinsic camera calibration (pose of camera wrt body),
|
|
* and each camera has its own extrinsic calibration.
|
|
* This factor requires that values contain the involved poses and extrinsics (both Pose3).
|
|
* @addtogroup SLAM
|
|
*/
|
|
class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
|
|
protected:
|
|
/// shared pointer to calibration object (one for each camera)
|
|
std::vector<boost::shared_ptr<Cal3_S2Stereo>> K_all_;
|
|
|
|
/// The keys corresponding to the pose of the body for each view
|
|
KeyVector w_P_body_keys_;
|
|
|
|
/// The keys corresponding to the extrinsic pose calibration for each view
|
|
KeyVector body_P_cam_keys_;
|
|
|
|
public:
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
/// shorthand for base class type
|
|
typedef SmartStereoProjectionFactor Base;
|
|
|
|
/// shorthand for this class
|
|
typedef SmartStereoProjectionFactorPP This;
|
|
|
|
/// shorthand for a smart pointer to a factor
|
|
typedef boost::shared_ptr<This> shared_ptr;
|
|
|
|
static const int Dim = 12; ///< Camera dimension
|
|
static const int DimPose = 6; ///< Camera dimension
|
|
static const int ZDim = 3; ///< Measurement dimension
|
|
typedef Eigen::Matrix<double, ZDim, Dim> MatrixZD; // F blocks (derivatives wrpt camera)
|
|
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
|
|
|
|
/**
|
|
* Constructor
|
|
* @param Isotropic measurement noise
|
|
* @param params internal parameters of the smart factors
|
|
*/
|
|
SmartStereoProjectionFactorPP(
|
|
const SharedNoiseModel& sharedNoiseModel,
|
|
const SmartStereoProjectionParams& params = SmartStereoProjectionParams());
|
|
|
|
/** Virtual destructor */
|
|
~SmartStereoProjectionFactorPP() override = default;
|
|
|
|
/**
|
|
* add a new measurement, with a pose key, and an extrinsic pose key
|
|
* @param measured is the 3-dimensional location of the projection of a
|
|
* single landmark in the a single view (the measurement)
|
|
* @param w_P_body_key is key corresponding to the camera observing the same landmark
|
|
* @param body_P_cam_key is key corresponding to the camera observing the same landmark
|
|
* @param K is the (fixed) camera calibration
|
|
*/
|
|
void add(const StereoPoint2& measured,
|
|
const Key& w_P_body_key, const Key& body_P_cam_key,
|
|
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
|
|
|
/**
|
|
* Variant of the previous one in which we include a set of measurements
|
|
* @param measurements vector of the 2m dimensional location of the projection
|
|
* of a single landmark in the m view (the measurements)
|
|
* @param w_P_body_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param body_P_cam_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param Ks vector of calibration objects
|
|
*/
|
|
void add(const std::vector<StereoPoint2>& measurements,
|
|
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
|
|
const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks);
|
|
|
|
/**
|
|
* Variant of the previous one in which we include a set of measurements with
|
|
* the same noise and calibration
|
|
* @param measurements vector of the 2m dimensional location of the projection
|
|
* of a single landmark in the m view (the measurement)
|
|
* @param w_P_body_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param body_P_cam_keys are the ordered keys corresponding to the camera observing the same landmark
|
|
* @param K the (known) camera calibration (same for all measurements)
|
|
*/
|
|
void add(const std::vector<StereoPoint2>& measurements,
|
|
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
|
|
const boost::shared_ptr<Cal3_S2Stereo>& K);
|
|
|
|
/**
|
|
* print
|
|
* @param s optional string naming the factor
|
|
* @param keyFormatter optional formatter useful for printing Symbols
|
|
*/
|
|
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
|
DefaultKeyFormatter) const override;
|
|
|
|
/// equals
|
|
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
|
|
|
|
/// equals
|
|
const KeyVector& getExtrinsicPoseKeys() const {return body_P_cam_keys_;};
|
|
|
|
/**
|
|
* error calculates the error of the factor.
|
|
*/
|
|
double error(const Values& values) const override;
|
|
|
|
/** return the calibration object */
|
|
inline std::vector<boost::shared_ptr<Cal3_S2Stereo>> calibration() const {
|
|
return K_all_;
|
|
}
|
|
|
|
/**
|
|
* Collect all cameras involved in this factor
|
|
* @param values Values structure which must contain camera poses
|
|
* corresponding
|
|
* to keys involved in this factor
|
|
* @return vector of Values
|
|
*/
|
|
Base::Cameras cameras(const Values& values) const override;
|
|
|
|
/// Compute F, E only (called below in both vanilla and SVD versions)
|
|
/// Assumes the point has been computed
|
|
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
|
void computeJacobiansWithTriangulatedPoint(
|
|
FBlocks& Fs,
|
|
Matrix& E, Vector& b, const Values& values) const {
|
|
if (!result_) {
|
|
throw ("computeJacobiansWithTriangulatedPoint");
|
|
} else {
|
|
size_t numViews = measured_.size();
|
|
E = Matrix::Zero(3*numViews,3); // a StereoPoint2 for each view
|
|
b = Vector::Zero(3*numViews); // a StereoPoint2 for each view
|
|
// valid result: compute jacobians
|
|
Matrix dPoseCam_dPoseBody,dPoseCam_dPoseExt, dProject_dPoseCam,Ei;
|
|
|
|
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
|
Pose3 w_P_body = values.at<Pose3>(w_P_body_keys_.at(i));
|
|
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
|
|
StereoCamera camera(w_P_body.compose(body_P_cam, dPoseCam_dPoseBody, dPoseCam_dPoseExt), K_all_[i]);
|
|
StereoPoint2 reprojectionError = StereoPoint2(camera.project(*result_, dProject_dPoseCam, Ei) - measured_.at(i));
|
|
// std::cout << "H0 \n" << dPoseCam_dPoseBody << std::endl;
|
|
// std::cout << "H1 \n" << dProject_dPoseCam << std::endl;
|
|
// std::cout << "H3 \n" << Ei << std::endl;
|
|
// std::cout << "H02 \n" << dPoseCam_dPoseExt << std::endl;
|
|
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
|
// std::cout << "H1 * H0 \n" << dProject_dPoseCam * dPoseCam_dPoseBody << std::endl;
|
|
// std::cout << "H1 * H02 \n" << dProject_dPoseCam * dPoseCam_dPoseExt << std::endl;
|
|
J.block<ZDim,6>(0,0) = dProject_dPoseCam * dPoseCam_dPoseBody; // (3x6) * (6x6)
|
|
J.block<ZDim,6>(0,6) = dProject_dPoseCam * dPoseCam_dPoseExt; // (3x6) * (6x6)
|
|
// std::cout << "J \n" << J << std::endl;
|
|
Fs.push_back(J);
|
|
size_t row = 3*i;
|
|
b.segment<ZDim>(row) = - reprojectionError.vector();
|
|
E.block<3,3>(row,0) = Ei;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
|
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
|
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
|
false) const {
|
|
|
|
size_t nrKeys = keys_.size();
|
|
|
|
// Create structures for Hessian Factors
|
|
KeyVector js;
|
|
std::vector<Matrix> Gs(nrKeys * (nrKeys + 1) / 2);
|
|
std::vector<Vector> gs(nrKeys);
|
|
|
|
if (this->measured_.size() != cameras(values).size())
|
|
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
|
|
"measured_.size() inconsistent with input");
|
|
|
|
triangulateSafe(cameras(values));
|
|
|
|
if (params_.degeneracyMode == ZERO_ON_DEGENERACY && !result_) {
|
|
std::cout << "degenerate" << std::endl;
|
|
// failed: return"empty" Hessian
|
|
for(Matrix& m: Gs)
|
|
m = Matrix::Zero(DimPose,DimPose);
|
|
for(Vector& v: gs)
|
|
v = Vector::Zero(DimPose);
|
|
return boost::make_shared<RegularHessianFactor<DimPose> >(keys_,
|
|
Gs, gs, 0.0);
|
|
}
|
|
|
|
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
|
|
FBlocks Fs;
|
|
Matrix F, E;
|
|
Vector b;
|
|
computeJacobiansWithTriangulatedPoint(Fs, E, b, values);
|
|
|
|
// Whiten using noise model
|
|
// std::cout << "noise model1 \n " << std::endl;
|
|
noiseModel_->WhitenSystem(E, b);
|
|
// std::cout << "noise model2 \n " << std::endl;
|
|
for (size_t i = 0; i < Fs.size(); i++)
|
|
Fs[i] = noiseModel_->Whiten(Fs[i]);
|
|
|
|
// std::cout << "noise model3 \n " << std::endl;
|
|
// build augmented hessian
|
|
Matrix3 P;
|
|
Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
|
|
|
// std::cout << "ComputePointCovariance done!!! \n " << std::endl;
|
|
// std::cout << "Fs.size() = " << Fs.size() << std::endl;
|
|
// std::cout << "E = " << E << std::endl;
|
|
// std::cout << "P = " << P << std::endl;
|
|
// std::cout << "b = " << b << std::endl;
|
|
SymmetricBlockMatrix augmentedHessian = //
|
|
Cameras::SchurComplement<3,Dim>(Fs, E, P, b);
|
|
|
|
std::vector<DenseIndex> dims(nrKeys + 1); // this also includes the b term
|
|
std::fill(dims.begin(), dims.end() - 1, 6);
|
|
dims.back() = 1;
|
|
|
|
size_t nrNonuniqueKeys = w_P_body_keys_.size() + body_P_cam_keys_.size();
|
|
SymmetricBlockMatrix augmentedHessianPP;
|
|
if ( nrKeys == nrNonuniqueKeys ){ // 1 calibration per camera
|
|
augmentedHessianPP = SymmetricBlockMatrix(dims, Matrix(augmentedHessian.selfadjointView()));
|
|
}else{
|
|
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
|
|
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
|
|
nonuniqueDims.back() = 1;
|
|
augmentedHessian = SymmetricBlockMatrix(nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
|
|
|
|
// these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
|
|
KeyVector nonuniqueKeys;
|
|
for(size_t i=0; i < w_P_body_keys_.size();i++){
|
|
nonuniqueKeys.push_back(w_P_body_keys_.at(i));
|
|
nonuniqueKeys.push_back(body_P_cam_keys_.at(i));
|
|
}
|
|
|
|
// get map from key to location in the new augmented Hessian matrix
|
|
std::map<Key,size_t> keyToSlotMap;
|
|
for(size_t k=0; k<nrKeys;k++){
|
|
keyToSlotMap[keys_[k]] = k;
|
|
}
|
|
|
|
std::cout << "linearize" << std::endl;
|
|
for(size_t i=0; i<nrKeys;i++){
|
|
std::cout <<"key: " << DefaultKeyFormatter(keys_[i]);
|
|
std::cout <<" key slot: " << keyToSlotMap[keys_[i]] << std::endl;
|
|
}
|
|
|
|
for(size_t i=0; i<nrNonuniqueKeys;i++){
|
|
std::cout <<"key: " << DefaultKeyFormatter(nonuniqueKeys[i]);
|
|
std::cout <<" key slot: " << keyToSlotMap[nonuniqueKeys[i]] << std::endl;
|
|
}
|
|
|
|
// initialize matrix to zero
|
|
augmentedHessianPP = SymmetricBlockMatrix(dims, Matrix::Zero(6*nrKeys+1,6*nrKeys+1));
|
|
|
|
std::cout <<" start for loop: " << std::endl;
|
|
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
|
|
for(size_t i=0; i<nrNonuniqueKeys;i++){ // rows
|
|
Key key_i = nonuniqueKeys.at(i);
|
|
std::cout <<" start for loop i: " << std::endl;
|
|
for(size_t j=0; j<nrNonuniqueKeys;j++){ // cols
|
|
std::cout <<" start for loop j: " << std::endl;
|
|
Key key_j = nonuniqueKeys.at(j);
|
|
std::cout <<"key_i: " << DefaultKeyFormatter(key_i);
|
|
std::cout <<" key_j: " << DefaultKeyFormatter(key_j);
|
|
std::cout <<" start for loop --: " << std::endl;
|
|
if(i==j){
|
|
std::cout <<" i=0: " << std::endl;
|
|
augmentedHessianPP.updateDiagonalBlock( keyToSlotMap[key_i] , augmentedHessian.diagonalBlock(i));
|
|
}else if(i < j){
|
|
std::cout <<" i<j: " << std::endl;
|
|
augmentedHessianPP.updateOffDiagonalBlock( keyToSlotMap[key_i] , keyToSlotMap[key_j],
|
|
augmentedHessian.aboveDiagonalBlock(i,j));
|
|
}
|
|
else{
|
|
std::cout <<" i>j: " << std::endl;
|
|
augmentedHessianPP.updateOffDiagonalBlock( keyToSlotMap[key_i] , keyToSlotMap[key_j],
|
|
augmentedHessian.aboveDiagonalBlock(j,i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return boost::make_shared<RegularHessianFactor<DimPose> >(keys_, augmentedHessianPP);
|
|
//std::cout << "Matrix(augmentedHessian.selfadjointView()) \n" << Matrix(augmentedHessian.selfadjointView()) <<std::endl;
|
|
}
|
|
|
|
/**
|
|
* Linearize to Gaussian Factor
|
|
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
|
* @return a Gaussian factor
|
|
*/
|
|
boost::shared_ptr<GaussianFactor> linearizeDamped(const Values& values,
|
|
const double lambda = 0.0) const {
|
|
// depending on flag set on construction we may linearize to different linear factors
|
|
switch (params_.linearizationMode) {
|
|
case HESSIAN:
|
|
return createHessianFactor(values, lambda);
|
|
default:
|
|
throw std::runtime_error("SmartStereoFactorlinearize: unknown mode");
|
|
}
|
|
}
|
|
|
|
/// linearize
|
|
boost::shared_ptr<GaussianFactor> linearize(
|
|
const Values& values) const override {
|
|
return linearizeDamped(values);
|
|
}
|
|
|
|
private:
|
|
/// Serialization function
|
|
friend class boost::serialization::access;
|
|
template <class ARCHIVE>
|
|
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
|
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
|
ar& BOOST_SERIALIZATION_NVP(K_all_);
|
|
}
|
|
|
|
}; // end of class declaration
|
|
|
|
/// traits
|
|
template <>
|
|
struct traits<SmartStereoProjectionFactorPP>
|
|
: public Testable<SmartStereoProjectionFactorPP> {};
|
|
|
|
} // namespace gtsam
|