gtsam/python/gtsam/tests/test_Pose2SLAMExample.py

77 lines
2.7 KiB
Python

"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Pose2SLAM unit tests.
Author: Frank Dellaert & Duy Nguyen Ta (Python)
"""
import unittest
from math import pi
import numpy as np
import gtsam
from gtsam.utils.test_case import GtsamTestCase
class TestPose2SLAMExample(GtsamTestCase):
def test_Pose2SLAMExample(self):
# Assumptions
# - All values are axis aligned
# - Robot poses are facing along the X axis (horizontal, to the right in images)
# - We have full odometry for measurements
# - The robot is on a grid, moving 2 meters each step
# Create graph container and add factors to it
graph = gtsam.NonlinearFactorGraph()
# Add prior
# gaussian for prior
priorMean = gtsam.Pose2(0.0, 0.0, 0.0) # prior at origin
priorNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.1]))
# add directly to graph
graph.add(gtsam.PriorFactorPose2(1, priorMean, priorNoise))
# Add odometry
# general noisemodel for odometry
odometryNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(gtsam.BetweenFactorPose2(
1, 2, gtsam.Pose2(2.0, 0.0, 0.0), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
2, 3, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
3, 4, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
graph.add(gtsam.BetweenFactorPose2(
4, 5, gtsam.Pose2(2.0, 0.0, pi / 2), odometryNoise))
# Add pose constraint
model = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.2, 0.2, 0.1]))
graph.add(gtsam.BetweenFactorPose2(5, 2, gtsam.Pose2(2.0, 0.0, pi / 2), model))
# Initialize to noisy points
initialEstimate = gtsam.Values()
initialEstimate.insert(1, gtsam.Pose2(0.5, 0.0, 0.2))
initialEstimate.insert(2, gtsam.Pose2(2.3, 0.1, -0.2))
initialEstimate.insert(3, gtsam.Pose2(4.1, 0.1, pi / 2))
initialEstimate.insert(4, gtsam.Pose2(4.0, 2.0, pi))
initialEstimate.insert(5, gtsam.Pose2(2.1, 2.1, -pi / 2))
# Optimize using Levenberg-Marquardt optimization with an ordering from
# colamd
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initialEstimate)
result = optimizer.optimizeSafely()
# Plot Covariance Ellipses
marginals = gtsam.Marginals(graph, result)
P = marginals.marginalCovariance(1)
pose_1 = result.atPose2(1)
self.gtsamAssertEquals(pose_1, gtsam.Pose2(), 1e-4)
if __name__ == "__main__":
unittest.main()