gtsam/gtsam/inference/EliminationTree-inst.h

327 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file EliminationTree-inst.h
* @author Frank Dellaert
* @author Richard Roberts
* @date Oct 13, 2010
*/
#pragma once
#include <stack>
#include <queue>
#include <cassert>
#include <gtsam/base/timing.h>
#include <gtsam/base/treeTraversal-inst.h>
#include <gtsam/inference/EliminationTree.h>
#include <gtsam/inference/VariableIndex.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/inference-inst.h>
namespace gtsam {
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
typename EliminationTree<BAYESNET,GRAPH>::sharedFactor
EliminationTree<BAYESNET,GRAPH>::Node::eliminate(
const std::shared_ptr<BayesNetType>& output,
const Eliminate& function, const FastVector<sharedFactor>& childrenResults) const
{
// This function eliminates one node (Node::eliminate) - see below eliminate for the whole tree.
assert(childrenResults.size() == children.size());
// Gather factors
FactorGraphType gatheredFactors;
gatheredFactors.reserve(factors.size() + children.size());
gatheredFactors.push_back(factors.begin(), factors.end());
gatheredFactors.push_back(childrenResults.begin(), childrenResults.end());
// Do dense elimination step
KeyVector keyAsVector(1); keyAsVector[0] = key;
auto eliminationResult = function(gatheredFactors, Ordering(keyAsVector));
// Add conditional to BayesNet
output->push_back(eliminationResult.first);
// Return result
return eliminationResult.second;
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
void EliminationTree<BAYESNET,GRAPH>::Node::print(
const std::string& str, const KeyFormatter& keyFormatter) const
{
std::cout << str << "(" << keyFormatter(key) << ")\n";
for(const sharedFactor& factor: factors) {
if(factor)
factor->print(str);
else
std::cout << str << "null factor\n";
}
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
EliminationTree<BAYESNET,GRAPH>::EliminationTree(const FactorGraphType& graph,
const VariableIndex& structure, const Ordering& order)
{
gttic(EliminationTree_Contructor);
// Number of factors and variables - NOTE in the case of partial elimination, n here may
// be fewer variables than are actually present in the graph.
const size_t m = graph.size();
const size_t n = order.size();
static const size_t none = std::numeric_limits<size_t>::max();
// Allocate result parent vector and vector of last factor columns
FastVector<sharedNode> nodes(n);
FastVector<size_t> parents(n, none);
FastVector<size_t> prevCol(m, none);
FastVector<bool> factorUsed(m, false);
try {
// for column j \in 1 to n do
for (size_t j = 0; j < n; j++)
{
// Retrieve the factors involving this variable and create the current node
const FactorIndices& factors = structure[order[j]];
const sharedNode node = std::make_shared<Node>();
node->key = order[j];
// for row i \in Struct[A*j] do
node->children.reserve(factors.size());
node->factors.reserve(factors.size());
for(const size_t i: factors) {
// If we already hit a variable in this factor, make the subtree containing the previous
// variable in this factor a child of the current node. This means that the variables
// eliminated earlier in the factor depend on the later variables in the factor. If we
// haven't yet hit a variable in this factor, we add the factor to the current node.
// TODO: Store root shortcuts instead of parents.
if (prevCol[i] != none) {
size_t k = prevCol[i];
// Find root r of the current tree that contains k. Use raw pointers in computing the
// parents to avoid changing the reference counts while traversing up the tree.
size_t r = k;
while (parents[r] != none)
r = parents[r];
// If the root of the subtree involving this node is actually the current node,
// TODO: what does this mean? forest?
if (r != j) {
// Now that we found the root, hook up parent and child pointers in the nodes.
parents[r] = j;
node->children.push_back(nodes[r]);
}
} else {
// Add the factor to the current node since we are at the first variable in this factor.
node->factors.push_back(graph[i]);
factorUsed[i] = true;
}
prevCol[i] = j;
}
nodes[j] = node;
}
} catch(std::invalid_argument& e) {
// If this is thrown from structure[order[j]] above, it means that it was requested to
// eliminate a variable not present in the graph, so throw a more informative error message.
(void)e; // Prevent unused variable warning
throw std::invalid_argument("EliminationTree: given ordering contains variables that are not involved in the factor graph");
} catch(...) {
throw;
}
// Find roots
assert(parents.empty() || parents.back() == none); // We expect the last-eliminated node to be a root no matter what
for(size_t j = 0; j < n; ++j)
if(parents[j] == none)
roots_.push_back(nodes[j]);
// Gather remaining factors (exclude null factors)
for(size_t i = 0; i < m; ++i)
if(!factorUsed[i] && graph[i])
remainingFactors_.push_back(graph[i]);
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
EliminationTree<BAYESNET,GRAPH>::EliminationTree(
const FactorGraphType& factorGraph, const Ordering& order)
{
gttic(ET_Create2);
// Build variable index first
const VariableIndex variableIndex(factorGraph);
This temp(factorGraph, variableIndex, order);
this->swap(temp); // Swap in the tree, and temp will be deleted
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
EliminationTree<BAYESNET,GRAPH>&
EliminationTree<BAYESNET,GRAPH>::operator=(const EliminationTree<BAYESNET,GRAPH>& other)
{
// Start by duplicating the tree.
roots_ = treeTraversal::CloneForest(other);
// Assign the remaining factors - these are pointers to factors in the original factor graph and
// we do not clone them.
remainingFactors_ = other.remainingFactors_;
return *this;
}
/* ************************************************************************* */
/** Destructor
* Using default destructor causes stack overflow for large trees due to recursive destruction of nodes;
* so we manually decrease the reference count of each node in the tree through a BFS, and the nodes with
* reference count 0 will be deleted. Please see [PR-1441](https://github.com/borglab/gtsam/pull/1441) for more details.
*/
template<class BAYESNET, class GRAPH>
EliminationTree<BAYESNET,GRAPH>::~EliminationTree()
{
// For each tree, we first move the root into a queue; then we do a BFS on the tree with the queue;
for (auto&& root : roots_) {
std::queue<sharedNode> bfs_queue;
// first, steal the root and move it to the queue. This invalidates root
bfs_queue.push(std::move(root));
// for each node iterated, if its reference count is 1, it will be deleted while its children are still in the queue.
// so that the recursive deletion will not happen.
while (!bfs_queue.empty()) {
// move the ownership of the front node from the queue to the current variable, invalidating the sharedClique at the front of the queue
auto node = std::move(bfs_queue.front());
bfs_queue.pop();
// add the children of the current node to the queue, so that the queue will also own the children nodes.
for (auto&& child : node->children) {
bfs_queue.push(std::move(child));
} // leaving the scope of current will decrease the reference count of the current node by 1, and if the reference count is 0,
// the node will be deleted. Because the children are in the queue, the deletion of the node will not trigger a recursive
// deletion of the children.
}
}
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
std::pair<std::shared_ptr<BAYESNET>, std::shared_ptr<GRAPH> >
EliminationTree<BAYESNET,GRAPH>::eliminate(Eliminate function) const
{
gttic(EliminationTree_eliminate);
// Allocate result
auto result = std::make_shared<BayesNetType>();
// Run tree elimination algorithm
FastVector<sharedFactor> remainingFactors = inference::EliminateTree(result, *this, function);
// Add remaining factors that were not involved with eliminated variables
auto allRemainingFactors = std::make_shared<FactorGraphType>();
allRemainingFactors->push_back(remainingFactors_.begin(), remainingFactors_.end());
allRemainingFactors->push_back(remainingFactors.begin(), remainingFactors.end());
// Return result
return {result, allRemainingFactors};
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
void EliminationTree<BAYESNET,GRAPH>::print(const std::string& name, const KeyFormatter& formatter) const
{
treeTraversal::PrintForest(*this, name, formatter);
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
bool EliminationTree<BAYESNET,GRAPH>::equals(const This& expected, double tol) const
{
// Depth-first-traversal stacks
std::stack<sharedNode, FastVector<sharedNode> > stack1, stack2;
// Add roots in sorted order
{
FastMap<Key,sharedNode> keys;
for(const sharedNode& root: this->roots_) { keys.emplace(root->key, root); }
typedef typename FastMap<Key,sharedNode>::value_type Key_Node;
for(const Key_Node& key_node: keys) { stack1.push(key_node.second); }
}
{
FastMap<Key,sharedNode> keys;
for(const sharedNode& root: expected.roots_) { keys.emplace(root->key, root); }
typedef typename FastMap<Key,sharedNode>::value_type Key_Node;
for(const Key_Node& key_node: keys) { stack2.push(key_node.second); }
}
// Traverse, adding children in sorted order
while(!stack1.empty() && !stack2.empty()) {
// Pop nodes
sharedNode node1 = stack1.top();
stack1.pop();
sharedNode node2 = stack2.top();
stack2.pop();
// Compare nodes
if(node1->key != node2->key)
return false;
if(node1->factors.size() != node2->factors.size()) {
return false;
} else {
for(typename Node::Factors::const_iterator it1 = node1->factors.begin(), it2 = node2->factors.begin();
it1 != node1->factors.end(); ++it1, ++it2) // Only check it1 == end because we already returned false for different counts
{
if(*it1 && *it2) {
if(!(*it1)->equals(**it2, tol))
return false;
} else if((*it1 && !*it2) || (*it2 && !*it1)) {
return false;
}
}
}
// Add children in sorted order
{
FastMap<Key,sharedNode> keys;
for(const sharedNode& node: node1->children) { keys.emplace(node->key, node); }
typedef typename FastMap<Key,sharedNode>::value_type Key_Node;
for(const Key_Node& key_node: keys) { stack1.push(key_node.second); }
}
{
FastMap<Key,sharedNode> keys;
for(const sharedNode& node: node2->children) { keys.emplace(node->key, node); }
typedef typename FastMap<Key,sharedNode>::value_type Key_Node;
for(const Key_Node& key_node: keys) { stack2.push(key_node.second); }
}
}
// If either stack is not empty, the number of nodes differed
if(!stack1.empty() || !stack2.empty())
return false;
return true;
}
/* ************************************************************************* */
template<class BAYESNET, class GRAPH>
void EliminationTree<BAYESNET,GRAPH>::swap(This& other) {
roots_.swap(other.roots_);
remainingFactors_.swap(other.remainingFactors_);
}
}