gtsam/wrap/matlab.h

444 lines
14 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file matlab.h
* @brief header file to be included in MATLAB wrappers
* @date 2008
* @author Frank Dellaert
* @author Alex Cunningham
* @author Andrew Melim
* @author Richard Roberts
*
* wrapping and unwrapping is done using specialized templates, see
* http://www.cplusplus.com/doc/tutorial/templates.html
*/
#include <gtsam/base/Vector.h>
#include <gtsam/base/Matrix.h>
using gtsam::Vector;
using gtsam::Matrix;
extern "C" {
#include <mex.h>
}
#include <boost/shared_ptr.hpp>
#include <boost/make_shared.hpp>
#include <list>
#include <string>
#include <sstream>
#include <typeinfo>
#include <set>
#include <streambuf>
using namespace std;
using namespace boost; // not usual, but for conciseness of generated code
// start GTSAM Specifics /////////////////////////////////////////////////
// to enable Matrix and Vector constructor for SharedGaussian:
#define GTSAM_MAGIC_GAUSSIAN
// end GTSAM Specifics /////////////////////////////////////////////////
#if defined(__LP64__) || defined(_WIN64)
// 64-bit
#define mxUINT32OR64_CLASS mxUINT64_CLASS
#else
#define mxUINT32OR64_CLASS mxUINT32_CLASS
#endif
// "Unique" key to signal calling the matlab object constructor with a raw pointer
// to a shared pointer of the same C++ object type as the MATLAB type.
// Also present in utilities.h
static const boost::uint64_t ptr_constructor_key =
(boost::uint64_t('G') << 56) |
(boost::uint64_t('T') << 48) |
(boost::uint64_t('S') << 40) |
(boost::uint64_t('A') << 32) |
(boost::uint64_t('M') << 24) |
(boost::uint64_t('p') << 16) |
(boost::uint64_t('t') << 8) |
(boost::uint64_t('r'));
//*****************************************************************************
// Utilities
//*****************************************************************************
void error(const char* str) {
mexErrMsgIdAndTxt("wrap:error", str);
}
mxArray *scalar(mxClassID classid) {
mwSize dims[1]; dims[0]=1;
return mxCreateNumericArray(1, dims, classid, mxREAL);
}
void checkScalar(const mxArray* array, const char* str) {
int m = mxGetM(array), n = mxGetN(array);
if (m!=1 || n!=1)
mexErrMsgIdAndTxt("wrap: not a scalar in ", str);
}
// Replacement streambuf for cout that writes to the MATLAB console
// Thanks to http://stackoverflow.com/a/249008
class mstream : public std::streambuf {
protected:
virtual std::streamsize xsputn(const char *s, std::streamsize n) {
mexPrintf("%.*s",n,s);
return n;
}
virtual int overflow(int c = EOF) {
if (c != EOF) {
mexPrintf("%.1s",&c);
}
return 1;
}
};
//*****************************************************************************
// Check arguments
//*****************************************************************************
void checkArguments(const string& name, int nargout, int nargin, int expected) {
stringstream err;
err << name << " expects " << expected << " arguments, not " << nargin;
if (nargin!=expected)
error(err.str().c_str());
}
//*****************************************************************************
// wrapping C++ basis types in MATLAB arrays
//*****************************************************************************
// default wrapping throws an error: only basis types are allowed in wrap
template <typename Class>
mxArray* wrap(const Class& value) {
error("wrap internal error: attempted wrap of invalid type");
return 0;
}
// specialization to string
// wraps into a character array
template<>
mxArray* wrap<string>(const string& value) {
return mxCreateString(value.c_str());
}
// specialization to char
template<>
mxArray* wrap<char>(const char& value) {
mxArray *result = scalar(mxUINT32OR64_CLASS);
*(char*)mxGetData(result) = value;
return result;
}
// specialization to unsigned char
template<>
mxArray* wrap<unsigned char>(const unsigned char& value) {
mxArray *result = scalar(mxUINT32OR64_CLASS);
*(unsigned char*)mxGetData(result) = value;
return result;
}
// specialization to bool
template<>
mxArray* wrap<bool>(const bool& value) {
mxArray *result = scalar(mxUINT32OR64_CLASS);
*(bool*)mxGetData(result) = value;
return result;
}
// specialization to size_t
template<>
mxArray* wrap<size_t>(const size_t& value) {
mxArray *result = scalar(mxUINT32OR64_CLASS);
*(size_t*)mxGetData(result) = value;
return result;
}
// specialization to int
template<>
mxArray* wrap<int>(const int& value) {
mxArray *result = scalar(mxUINT32OR64_CLASS);
*(int*)mxGetData(result) = value;
return result;
}
// specialization to double -> just double
template<>
mxArray* wrap<double>(const double& value) {
return mxCreateDoubleScalar(value);
}
// wrap a const Eigen vector into a double vector
mxArray* wrap_Vector(const gtsam::Vector& v) {
int m = v.size();
mxArray *result = mxCreateDoubleMatrix(m, 1, mxREAL);
double *data = mxGetPr(result);
for (int i=0;i<m;i++) data[i]=v(i);
return result;
}
// specialization to Eigen vector -> double vector
template<>
mxArray* wrap<gtsam::Vector >(const gtsam::Vector& v) {
return wrap_Vector(v);
}
// wrap a const Eigen MATRIX into a double matrix
mxArray* wrap_Matrix(const gtsam::Matrix& A) {
int m = A.rows(), n = A.cols();
#ifdef DEBUG_WRAP
mexPrintf("wrap_Matrix called with A = \n", m,n);
gtsam::print(A);
#endif
mxArray *result = mxCreateDoubleMatrix(m, n, mxREAL);
double *data = mxGetPr(result);
// converts from column-major to row-major
for (int j=0;j<n;j++) for (int i=0;i<m;i++,data++) *data = A(i,j);
return result;
}
// specialization to Eigen MATRIX -> double matrix
template<>
mxArray* wrap<gtsam::Matrix >(const gtsam::Matrix& A) {
return wrap_Matrix(A);
}
//*****************************************************************************
// unwrapping MATLAB arrays into C++ basis types
//*****************************************************************************
// default unwrapping throws an error
// as wrap only supports passing a reference or one of the basic types
template <typename T>
T unwrap(const mxArray* array) {
error("wrap internal error: attempted unwrap of invalid type");
return T();
}
// specialization to string
// expects a character array
// Warning: relies on mxChar==char
template<>
string unwrap<string>(const mxArray* array) {
char *data = mxArrayToString(array);
if (data==NULL) error("unwrap<string>: not a character array");
string str(data);
mxFree(data);
return str;
}
// Check for 64-bit, as Mathworks says mxGetScalar only good for 32 bit
template <typename T>
T myGetScalar(const mxArray* array) {
switch (mxGetClassID(array)) {
case mxINT64_CLASS:
return (T) *(boost::int64_t*) mxGetData(array);
case mxUINT64_CLASS:
return (T) *(boost::uint64_t*) mxGetData(array);
default:
// hope for the best!
return (T) mxGetScalar(array);
}
}
// specialization to bool
template<>
bool unwrap<bool>(const mxArray* array) {
checkScalar(array,"unwrap<bool>");
return myGetScalar<bool>(array);
}
// specialization to char
template<>
char unwrap<char>(const mxArray* array) {
checkScalar(array,"unwrap<char>");
return myGetScalar<char>(array);
}
// specialization to unsigned char
template<>
unsigned char unwrap<unsigned char>(const mxArray* array) {
checkScalar(array,"unwrap<unsigned char>");
return myGetScalar<unsigned char>(array);
}
// specialization to int
template<>
int unwrap<int>(const mxArray* array) {
checkScalar(array,"unwrap<int>");
return myGetScalar<int>(array);
}
// specialization to size_t
template<>
size_t unwrap<size_t>(const mxArray* array) {
checkScalar(array, "unwrap<size_t>");
return myGetScalar<size_t>(array);
}
// specialization to double
template<>
double unwrap<double>(const mxArray* array) {
checkScalar(array,"unwrap<double>");
return myGetScalar<double>(array);
}
// specialization to Eigen vector
template<>
gtsam::Vector unwrap< gtsam::Vector >(const mxArray* array) {
int m = mxGetM(array), n = mxGetN(array);
if (mxIsDouble(array)==false || n!=1) error("unwrap<vector>: not a vector");
#ifdef DEBUG_WRAP
mexPrintf("unwrap< gtsam::Vector > called with %dx%d argument\n", m,n);
#endif
double* data = (double*)mxGetData(array);
gtsam::Vector v(m);
for (int i=0;i<m;i++,data++) v(i) = *data;
#ifdef DEBUG_WRAP
gtsam::print(v);
#endif
return v;
}
// specialization to Eigen matrix
template<>
gtsam::Matrix unwrap< gtsam::Matrix >(const mxArray* array) {
if (mxIsDouble(array)==false) error("unwrap<matrix>: not a matrix");
int m = mxGetM(array), n = mxGetN(array);
#ifdef DEBUG_WRAP
mexPrintf("unwrap< gtsam::Matrix > called with %dx%d argument\n", m,n);
#endif
double* data = (double*)mxGetData(array);
gtsam::Matrix A(m,n);
// converts from row-major to column-major
for (int j=0;j<n;j++) for (int i=0;i<m;i++,data++) A(i,j) = *data;
#ifdef DEBUG_WRAP
gtsam::print(A);
#endif
return A;
}
/*
[create_object] creates a MATLAB proxy class object with a mexhandle
in the self property. Matlab does not allow the creation of matlab
objects from within mex files, hence we resort to an ugly trick: we
invoke the proxy class constructor by calling MATLAB with a special
uint64 value ptr_constructor_key and the pointer itself. MATLAB
allocates the object. Then, the special constructor in our wrap code
that is activated when the ptr_constructor_key is passed in passes
the pointer back into a C++ function to add the pointer to its
collector. We go through this extra "C++ to MATLAB to C++ step" in
order to be able to add to the collector could be in a different wrap
module.
*/
mxArray* create_object(const std::string& classname, void *pointer, bool isVirtual, const char *rttiName) {
mxArray *result;
mxArray *input[3];
int nargin = 2;
// First input argument is pointer constructor key
input[0] = mxCreateNumericMatrix(1, 1, mxUINT64_CLASS, mxREAL);
*reinterpret_cast<boost::uint64_t*>(mxGetData(input[0])) = ptr_constructor_key;
// Second input argument is the pointer
input[1] = mxCreateNumericMatrix(1, 1, mxUINT32OR64_CLASS, mxREAL);
*reinterpret_cast<void**>(mxGetData(input[1])) = pointer;
// If the class is virtual, use the RTTI name to look up the derived matlab type
const char *derivedClassName;
if(isVirtual) {
const mxArray *rttiRegistry = mexGetVariablePtr("global", "gtsamwrap_rttiRegistry");
if(!rttiRegistry)
mexErrMsgTxt(
"gtsam wrap: RTTI registry is missing - it could have been cleared from the workspace."
" You can issue 'clear all' to completely clear the workspace, and next time a wrapped object is"
" created the RTTI registry will be recreated.");
const mxArray *derivedNameMx = mxGetField(rttiRegistry, 0, rttiName);
if(!derivedNameMx)
mexErrMsgTxt((
"gtsam wrap: The derived class type " + string(rttiName) + " was not found in the RTTI registry. "
"Try calling 'clear all' twice consecutively - we have seen things not get unloaded properly the "
"first time. If this does not work, this may indicate an inconsistency in your wrap interface file. "
"The most likely cause for this is that a base class was marked virtual in the wrap interface "
"definition header file for gtsam or for your module, but a derived type was returned by a C++ "
"function and that derived type was not marked virtual (or was not specified in the wrap interface "
"definition header at all).").c_str());
size_t strLen = mxGetN(derivedNameMx);
char *buf = new char[strLen+1];
if(mxGetString(derivedNameMx, buf, strLen+1))
mexErrMsgTxt("gtsam wrap: Internal error reading RTTI table, try 'clear all' to clear your workspace and reinitialize the toolbox.");
derivedClassName = buf;
input[2] = mxCreateString("void");
nargin = 3;
} else {
derivedClassName = classname.c_str();
}
// Call special pointer constructor, which sets 'self'
mexCallMATLAB(1,&result, nargin, input, derivedClassName);
// Deallocate our memory
mxDestroyArray(input[0]);
mxDestroyArray(input[1]);
if(isVirtual) {
mxDestroyArray(input[2]);
delete[] derivedClassName;
}
return result;
}
/*
When the user calls a method that returns a shared pointer, we create
an ObjectHandle from the shared_pointer and return it as a proxy
class to matlab.
*/
template <typename Class>
mxArray* wrap_shared_ptr(boost::shared_ptr< Class > shared_ptr, const std::string& matlabName, bool isVirtual) {
// Create actual class object from out pointer
mxArray* result;
if(isVirtual) {
boost::shared_ptr<void> void_ptr(shared_ptr);
result = create_object(matlabName, &void_ptr, isVirtual, typeid(*shared_ptr).name());
} else {
boost::shared_ptr<Class> *heapPtr = new boost::shared_ptr<Class>(shared_ptr);
result = create_object(matlabName, heapPtr, isVirtual, "");
}
return result;
}
template <typename Class>
boost::shared_ptr<Class> unwrap_shared_ptr(const mxArray* obj, const string& propertyName) {
mxArray* mxh = mxGetProperty(obj,0, propertyName.c_str());
if (mxGetClassID(mxh) != mxUINT32OR64_CLASS || mxIsComplex(mxh)
|| mxGetM(mxh) != 1 || mxGetN(mxh) != 1) error(
"Parameter is not an Shared type.");
boost::shared_ptr<Class>* spp = *reinterpret_cast<boost::shared_ptr<Class>**> (mxGetData(mxh));
return *spp;
}
//// throw an error if unwrap_shared_ptr is attempted for an Eigen Vector
//template <>
//Vector unwrap_shared_ptr<Vector>(const mxArray* obj, const string& propertyName) {
// bool unwrap_shared_ptr_Vector_attempted = false;
// BOOST_STATIC_ASSERT(unwrap_shared_ptr_Vector_attempted, "Vector cannot be unwrapped as a shared pointer");
// return Vector();
//}
//// throw an error if unwrap_shared_ptr is attempted for an Eigen Matrix
//template <>
//Matrix unwrap_shared_ptr<Matrix>(const mxArray* obj, const string& propertyName) {
// bool unwrap_shared_ptr_Matrix_attempted = false;
// BOOST_STATIC_ASSERT(unwrap_shared_ptr_Matrix_attempted, "Matrix cannot be unwrapped as a shared pointer");
// return Matrix();
//}