gtsam/tests/testNonlinearEquality.cpp

588 lines
19 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file testNonlinearEquality.cpp
* @author Alex Cunningham
*/
#include <tests/simulated2DConstraints.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3_S2.h>
#include <gtsam/geometry/SimpleCamera.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
namespace eq2D = simulated2D::equality_constraints;
static const double tol = 1e-5;
typedef PriorFactor<Pose2> PosePrior;
typedef NonlinearEquality<Pose2> PoseNLE;
typedef boost::shared_ptr<PoseNLE> shared_poseNLE;
static Symbol key('x', 1);
//******************************************************************************
TEST ( NonlinearEquality, linearization ) {
Pose2 value = Pose2(2.1, 1.0, 2.0);
Values linearize;
linearize.insert(key, value);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize
SharedDiagonal constraintModel = noiseModel::Constrained::All(3);
JacobianFactor expLF(key, I_3x3, Z_3x1, constraintModel);
GaussianFactor::shared_ptr actualLF = nle->linearize(linearize);
EXPECT(assert_equal((const GaussianFactor&)expLF, *actualLF));
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_pose ) {
Symbol key('x', 1);
Pose2 value;
Values config;
config.insert(key, value);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
GaussianFactor::shared_ptr actualLF = nle->linearize(config);
EXPECT(true);
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_fail ) {
Pose2 value = Pose2(2.1, 1.0, 2.0);
Pose2 wrong = Pose2(2.1, 3.0, 4.0);
Values bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_fail_pose ) {
Symbol key('x', 1);
Pose2 value(2.0, 1.0, 2.0), wrong(2.0, 3.0, 4.0);
Values bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
//******************************************************************************
TEST ( NonlinearEquality, linearization_fail_pose_origin ) {
Symbol key('x', 1);
Pose2 value, wrong(2.0, 3.0, 4.0);
Values bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
//******************************************************************************
TEST ( NonlinearEquality, error ) {
Pose2 value = Pose2(2.1, 1.0, 2.0);
Pose2 wrong = Pose2(2.1, 3.0, 4.0);
Values feasible, bad_linearize;
feasible.insert(key, value);
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check error function outputs
Vector actual = nle->unwhitenedError(feasible);
EXPECT(assert_equal(actual, Z_3x1));
actual = nle->unwhitenedError(bad_linearize);
EXPECT(
assert_equal(actual, Vector::Constant(3, std::numeric_limits<double>::infinity())));
}
//******************************************************************************
TEST ( NonlinearEquality, equals ) {
Pose2 value1 = Pose2(2.1, 1.0, 2.0);
Pose2 value2 = Pose2(2.1, 3.0, 4.0);
// create some constraints to compare
shared_poseNLE nle1(new PoseNLE(key, value1));
shared_poseNLE nle2(new PoseNLE(key, value1));
shared_poseNLE nle3(new PoseNLE(key, value2));
// verify
EXPECT(nle1->equals(*nle2));
// basic equality = true
EXPECT(nle2->equals(*nle1));
// test symmetry of equals()
EXPECT(!nle1->equals(*nle3));
// test config
}
//******************************************************************************
TEST ( NonlinearEquality, allow_error_pose ) {
Symbol key1('x', 1);
Pose2 feasible1(1.0, 2.0, 3.0);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// the unwhitened error should provide logmap to the feasible state
Pose2 badPoint1(0.0, 2.0, 3.0);
Vector actVec = nle.evaluateError(badPoint1);
Vector expVec = Vector3(-0.989992, -0.14112, 0.0);
EXPECT(assert_equal(expVec, actVec, 1e-5));
// the actual error should have a gain on it
Values config;
config.insert(key1, badPoint1);
double actError = nle.error(config);
DOUBLES_EQUAL(500.0, actError, 1e-9);
// check linearization
GaussianFactor::shared_ptr actLinFactor = nle.linearize(config);
Matrix A1 = I_3x3;
Vector b = expVec;
SharedDiagonal model = noiseModel::Constrained::All(3);
GaussianFactor::shared_ptr expLinFactor(
new JacobianFactor(key1, A1, b, model));
EXPECT(assert_equal(*expLinFactor, *actLinFactor, 1e-5));
}
//******************************************************************************
TEST ( NonlinearEquality, allow_error_optimize ) {
Symbol key1('x', 1);
Pose2 feasible1(1.0, 2.0, 3.0);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// add to a graph
NonlinearFactorGraph graph;
graph += nle;
// initialize away from the ideal
Pose2 initPose(0.0, 2.0, 3.0);
Values init;
init.insert(key1, initPose);
// optimize
Ordering ordering;
ordering.push_back(key1);
Values result = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
// verify
Values expected;
expected.insert(key1, feasible1);
EXPECT(assert_equal(expected, result));
}
//******************************************************************************
TEST ( NonlinearEquality, allow_error_optimize_with_factors ) {
// create a hard constraint
Symbol key1('x', 1);
Pose2 feasible1(1.0, 2.0, 3.0);
// initialize away from the ideal
Values init;
Pose2 initPose(0.0, 2.0, 3.0);
init.insert(key1, initPose);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// create a soft prior that conflicts
PosePrior prior(key1, initPose, noiseModel::Isotropic::Sigma(3, 0.1));
// add to a graph
NonlinearFactorGraph graph;
graph += nle;
graph += prior;
// optimize
Ordering ordering;
ordering.push_back(key1);
Values actual = LevenbergMarquardtOptimizer(graph, init, ordering).optimize();
// verify
Values expected;
expected.insert(key1, feasible1);
EXPECT(assert_equal(expected, actual));
}
//******************************************************************************
static SharedDiagonal hard_model = noiseModel::Constrained::All(2);
static SharedDiagonal soft_model = noiseModel::Isotropic::Sigma(2, 1.0);
//******************************************************************************
TEST( testNonlinearEqualityConstraint, unary_basics ) {
Point2 pt(1.0, 2.0);
Symbol key1('x', 1);
double mu = 1000.0;
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
Values config1;
config1.insert(key, pt);
EXPECT(constraint.active(config1));
EXPECT(assert_equal(Z_2x1, constraint.evaluateError(pt), tol));
EXPECT(assert_equal(Z_2x1, constraint.unwhitenedError(config1), tol));
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
Values config2;
Point2 ptBad1(2.0, 2.0);
config2.insert(key, ptBad1);
EXPECT(constraint.active(config2));
EXPECT(
assert_equal(Vector2(1.0, 0.0), constraint.evaluateError(ptBad1), tol));
EXPECT(
assert_equal(Vector2(1.0, 0.0), constraint.unwhitenedError(config2), tol));
EXPECT_DOUBLES_EQUAL(500.0, constraint.error(config2), tol);
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, unary_linearization ) {
Point2 pt(1.0, 2.0);
Symbol key1('x', 1);
double mu = 1000.0;
eq2D::UnaryEqualityConstraint constraint(pt, key, mu);
Values config1;
config1.insert(key, pt);
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
GaussianFactor::shared_ptr expected1(
new JacobianFactor(key, I_2x2, Z_2x1, hard_model));
EXPECT(assert_equal(*expected1, *actual1, tol));
Values config2;
Point2 ptBad(2.0, 2.0);
config2.insert(key, ptBad);
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
GaussianFactor::shared_ptr expected2(
new JacobianFactor(key, I_2x2, Vector2(-1.0, 0.0), hard_model));
EXPECT(assert_equal(*expected2, *actual2, tol));
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, unary_simple_optimization ) {
// create a single-node graph with a soft and hard constraint to
// ensure that the hard constraint overrides the soft constraint
Point2 truth_pt(1.0, 2.0);
Symbol key('x', 1);
double mu = 10.0;
eq2D::UnaryEqualityConstraint::shared_ptr constraint(
new eq2D::UnaryEqualityConstraint(truth_pt, key, mu));
Point2 badPt(100.0, -200.0);
simulated2D::Prior::shared_ptr factor(
new simulated2D::Prior(badPt, soft_model, key));
NonlinearFactorGraph graph;
graph.push_back(constraint);
graph.push_back(factor);
Values initValues;
initValues.insert(key, badPt);
// verify error values
EXPECT(constraint->active(initValues));
Values expected;
expected.insert(key, truth_pt);
EXPECT(constraint->active(expected));
EXPECT_DOUBLES_EQUAL(0.0, constraint->error(expected), tol);
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
EXPECT(assert_equal(expected, actual, tol));
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, odo_basics ) {
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
Symbol key1('x', 1), key2('x', 2);
double mu = 1000.0;
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
Values config1;
config1.insert(key1, x1);
config1.insert(key2, x2);
EXPECT(constraint.active(config1));
EXPECT(assert_equal(Z_2x1, constraint.evaluateError(x1, x2), tol));
EXPECT(assert_equal(Z_2x1, constraint.unwhitenedError(config1), tol));
EXPECT_DOUBLES_EQUAL(0.0, constraint.error(config1), tol);
Values config2;
Point2 x1bad(2.0, 2.0);
Point2 x2bad(2.0, 2.0);
config2.insert(key1, x1bad);
config2.insert(key2, x2bad);
EXPECT(constraint.active(config2));
EXPECT(
assert_equal(Vector2(-1.0, -1.0), constraint.evaluateError(x1bad, x2bad), tol));
EXPECT(
assert_equal(Vector2(-1.0, -1.0), constraint.unwhitenedError(config2), tol));
EXPECT_DOUBLES_EQUAL(1000.0, constraint.error(config2), tol);
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, odo_linearization ) {
Point2 x1(1.0, 2.0), x2(2.0, 3.0), odom(1.0, 1.0);
Symbol key1('x', 1), key2('x', 2);
double mu = 1000.0;
eq2D::OdoEqualityConstraint constraint(odom, key1, key2, mu);
Values config1;
config1.insert(key1, x1);
config1.insert(key2, x2);
GaussianFactor::shared_ptr actual1 = constraint.linearize(config1);
GaussianFactor::shared_ptr expected1(
new JacobianFactor(key1, -I_2x2, key2, I_2x2, Z_2x1,
hard_model));
EXPECT(assert_equal(*expected1, *actual1, tol));
Values config2;
Point2 x1bad(2.0, 2.0);
Point2 x2bad(2.0, 2.0);
config2.insert(key1, x1bad);
config2.insert(key2, x2bad);
GaussianFactor::shared_ptr actual2 = constraint.linearize(config2);
GaussianFactor::shared_ptr expected2(
new JacobianFactor(key1, -I_2x2, key2, I_2x2, Vector2(1.0, 1.0),
hard_model));
EXPECT(assert_equal(*expected2, *actual2, tol));
}
//******************************************************************************
TEST( testNonlinearEqualityConstraint, odo_simple_optimize ) {
// create a two-node graph, connected by an odometry constraint, with
// a hard prior on one variable, and a conflicting soft prior
// on the other variable - the constraints should override the soft constraint
Point2 truth_pt1(1.0, 2.0), truth_pt2(3.0, 2.0);
Symbol key1('x', 1), key2('x', 2);
// hard prior on x1
eq2D::UnaryEqualityConstraint::shared_ptr constraint1(
new eq2D::UnaryEqualityConstraint(truth_pt1, key1));
// soft prior on x2
Point2 badPt(100.0, -200.0);
simulated2D::Prior::shared_ptr factor(
new simulated2D::Prior(badPt, soft_model, key2));
// odometry constraint
eq2D::OdoEqualityConstraint::shared_ptr constraint2(
new eq2D::OdoEqualityConstraint(truth_pt2-truth_pt1, key1, key2));
NonlinearFactorGraph graph;
graph.push_back(constraint1);
graph.push_back(constraint2);
graph.push_back(factor);
Values initValues;
initValues.insert(key1, Point2(0,0));
initValues.insert(key2, badPt);
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
Values expected;
expected.insert(key1, truth_pt1);
expected.insert(key2, truth_pt2);
CHECK(assert_equal(expected, actual, tol));
}
//******************************************************************************
TEST (testNonlinearEqualityConstraint, two_pose ) {
/*
* Determining a ground truth linear system
* with two poses seeing one landmark, with each pose
* constrained to a particular value
*/
NonlinearFactorGraph graph;
Symbol x1('x', 1), x2('x', 2);
Symbol l1('l', 1), l2('l', 2);
Point2 pt_x1(1.0, 1.0), pt_x2(5.0, 6.0);
graph += eq2D::UnaryEqualityConstraint(pt_x1, x1);
graph += eq2D::UnaryEqualityConstraint(pt_x2, x2);
Point2 z1(0.0, 5.0);
SharedNoiseModel sigma(noiseModel::Isotropic::Sigma(2, 0.1));
graph += simulated2D::Measurement(z1, sigma, x1, l1);
Point2 z2(-4.0, 0.0);
graph += simulated2D::Measurement(z2, sigma, x2, l2);
graph += eq2D::PointEqualityConstraint(l1, l2);
Values initialEstimate;
initialEstimate.insert(x1, pt_x1);
initialEstimate.insert(x2, Point2(0,0));
initialEstimate.insert(l1, Point2(1.0, 6.0)); // ground truth
initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
Values actual =
LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
Values expected;
expected.insert(x1, pt_x1);
expected.insert(l1, Point2(1.0, 6.0));
expected.insert(l2, Point2(1.0, 6.0));
expected.insert(x2, Point2(5.0, 6.0));
CHECK(assert_equal(expected, actual, 1e-5));
}
//******************************************************************************
TEST (testNonlinearEqualityConstraint, map_warp ) {
// get a graph
NonlinearFactorGraph graph;
// keys
Symbol x1('x', 1), x2('x', 2);
Symbol l1('l', 1), l2('l', 2);
// constant constraint on x1
Point2 pose1(1.0, 1.0);
graph += eq2D::UnaryEqualityConstraint(pose1, x1);
SharedDiagonal sigma = noiseModel::Isotropic::Sigma(2, 0.1);
// measurement from x1 to l1
Point2 z1(0.0, 5.0);
graph += simulated2D::Measurement(z1, sigma, x1, l1);
// measurement from x2 to l2
Point2 z2(-4.0, 0.0);
graph += simulated2D::Measurement(z2, sigma, x2, l2);
// equality constraint between l1 and l2
graph += eq2D::PointEqualityConstraint(l1, l2);
// create an initial estimate
Values initialEstimate;
initialEstimate.insert(x1, Point2(1.0, 1.0));
initialEstimate.insert(l1, Point2(1.0, 6.0));
initialEstimate.insert(l2, Point2(-4.0, 0.0)); // starting with a separate reference frame
initialEstimate.insert(x2, Point2(0.0, 0.0)); // other pose starts at origin
// optimize
Values actual =
LevenbergMarquardtOptimizer(graph, initialEstimate).optimize();
Values expected;
expected.insert(x1, Point2(1.0, 1.0));
expected.insert(l1, Point2(1.0, 6.0));
expected.insert(l2, Point2(1.0, 6.0));
expected.insert(x2, Point2(5.0, 6.0));
CHECK(assert_equal(expected, actual, tol));
}
//******************************************************************************
TEST (testNonlinearEqualityConstraint, stereo_constrained ) {
// make a realistic calibration matrix
static double fov = 60; // degrees
static int w = 640, h = 480;
static Cal3_S2 K(fov, w, h);
static boost::shared_ptr<Cal3_S2> shK(new Cal3_S2(K));
// create initial estimates
Rot3 faceTowardsY(Point3(1, 0, 0), Point3(0, 0, -1), Point3(0, 1, 0));
Pose3 poseLeft(faceTowardsY, Point3(0, 0, 0)); // origin, left camera
SimpleCamera leftCamera(poseLeft, K);
Pose3 poseRight(faceTowardsY, Point3(2, 0, 0)); // 2 units to the right
SimpleCamera rightCamera(poseRight, K);
Point3 landmark(1, 5, 0); //centered between the cameras, 5 units away
// keys
Symbol key_x1('x', 1), key_x2('x', 2);
Symbol key_l1('l', 1), key_l2('l', 2);
// create graph
NonlinearFactorGraph graph;
// create equality constraints for poses
graph += NonlinearEquality<Pose3>(key_x1, leftCamera.pose());
graph += NonlinearEquality<Pose3>(key_x2, rightCamera.pose());
// create factors
SharedDiagonal vmodel = noiseModel::Unit::Create(2);
graph += GenericProjectionFactor<Pose3, Point3, Cal3_S2>(
leftCamera.project(landmark), vmodel, key_x1, key_l1, shK);
graph += GenericProjectionFactor<Pose3, Point3, Cal3_S2>(
rightCamera.project(landmark), vmodel, key_x2, key_l2, shK);
// add equality constraint saying there is only one point
graph += NonlinearEquality2<Point3>(key_l1, key_l2);
// create initial data
Point3 landmark1(0.5, 5, 0);
Point3 landmark2(1.5, 5, 0);
Values initValues;
initValues.insert(key_x1, poseLeft);
initValues.insert(key_x2, poseRight);
initValues.insert(key_l1, landmark1);
initValues.insert(key_l2, landmark2);
// optimize
Values actual = LevenbergMarquardtOptimizer(graph, initValues).optimize();
// create config
Values truthValues;
truthValues.insert(key_x1, leftCamera.pose());
truthValues.insert(key_x2, rightCamera.pose());
truthValues.insert(key_l1, landmark);
truthValues.insert(key_l2, landmark);
// check if correct
CHECK(assert_equal(truthValues, actual, 1e-5));
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************