145 lines
4.7 KiB
C++
145 lines
4.7 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testIterative.cpp
|
|
* @brief Unit tests for iterative methods
|
|
* @author Frank Dellaert
|
|
**/
|
|
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/nonlinear/NonlinearEquality.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/linear/iterative.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using namespace example;
|
|
using symbol_shorthand::X; // to create pose keys
|
|
using symbol_shorthand::L; // to create landmark keys
|
|
|
|
static ConjugateGradientParameters parameters;
|
|
// add following below to add printing:
|
|
// parameters.verbosity_ = ConjugateGradientParameters::COMPLEXITY;
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Iterative, steepestDescent )
|
|
{
|
|
// Create factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// eliminate and solve
|
|
VectorValues expected = fg.optimize();
|
|
|
|
// Do gradient descent
|
|
VectorValues zero = VectorValues::Zero(expected); // TODO, how do we do this normally?
|
|
VectorValues actual = steepestDescent(fg, zero, parameters);
|
|
CHECK(assert_equal(expected,actual,1e-2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Iterative, conjugateGradientDescent )
|
|
{
|
|
// Create factor graph
|
|
GaussianFactorGraph fg = createGaussianFactorGraph();
|
|
|
|
// eliminate and solve
|
|
VectorValues expected = fg.optimize();
|
|
|
|
// get matrices
|
|
Matrix A;
|
|
Vector b;
|
|
Vector x0 = Z_6x1;
|
|
boost::tie(A, b) = fg.jacobian();
|
|
Vector expectedX = (Vector(6) << -0.1, 0.1, -0.1, -0.1, 0.1, -0.2).finished();
|
|
|
|
// Do conjugate gradient descent, System version
|
|
System Ab(A, b);
|
|
Vector actualX = conjugateGradientDescent(Ab, x0, parameters);
|
|
CHECK(assert_equal(expectedX,actualX,1e-9));
|
|
|
|
// Do conjugate gradient descent, Matrix version
|
|
Vector actualX2 = conjugateGradientDescent(A, b, x0, parameters);
|
|
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
|
|
|
// Do conjugate gradient descent on factor graph
|
|
VectorValues zero = VectorValues::Zero(expected);
|
|
VectorValues actual = conjugateGradientDescent(fg, zero, parameters);
|
|
CHECK(assert_equal(expected,actual,1e-2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Iterative, conjugateGradientDescent_hard_constraint )
|
|
{
|
|
Values config;
|
|
Pose2 pose1 = Pose2(0.,0.,0.);
|
|
config.insert(X(1), pose1);
|
|
config.insert(X(2), Pose2(1.5,0.,0.));
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph += NonlinearEquality<Pose2>(X(1), pose1);
|
|
graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
|
|
|
|
boost::shared_ptr<GaussianFactorGraph> fg = graph.linearize(config);
|
|
|
|
VectorValues zeros = config.zeroVectors();
|
|
|
|
ConjugateGradientParameters parameters;
|
|
parameters.setEpsilon_abs(1e-3);
|
|
parameters.setEpsilon_rel(1e-5);
|
|
parameters.setMaxIterations(100);
|
|
VectorValues actual = conjugateGradientDescent(*fg, zeros, parameters);
|
|
|
|
VectorValues expected;
|
|
expected.insert(X(1), Z_3x1);
|
|
expected.insert(X(2), Vector3(-0.5,0.,0.));
|
|
CHECK(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Iterative, conjugateGradientDescent_soft_constraint )
|
|
{
|
|
Values config;
|
|
config.insert(X(1), Pose2(0.,0.,0.));
|
|
config.insert(X(2), Pose2(1.5,0.,0.));
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph += PriorFactor<Pose2>(X(1), Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3, 1e-10));
|
|
graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.,0.,0.), noiseModel::Isotropic::Sigma(3, 1));
|
|
|
|
boost::shared_ptr<GaussianFactorGraph> fg = graph.linearize(config);
|
|
|
|
VectorValues zeros = config.zeroVectors();
|
|
|
|
ConjugateGradientParameters parameters;
|
|
parameters.setEpsilon_abs(1e-3);
|
|
parameters.setEpsilon_rel(1e-5);
|
|
parameters.setMaxIterations(100);
|
|
VectorValues actual = conjugateGradientDescent(*fg, zeros, parameters);
|
|
|
|
VectorValues expected;
|
|
expected.insert(X(1), Z_3x1);
|
|
expected.insert(X(2), Vector3(-0.5,0.,0.));
|
|
CHECK(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|