128 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			128 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    testVisualISAM2.cpp
 | |
|  * @brief   Test convergence of visualSLAM example.
 | |
|  * @author  Duy-Nguyen Ta
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <examples/SFMdata.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/nonlinear/ISAM2.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(testVisualISAM2, all)
 | |
| {
 | |
|     Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
 | |
| 
 | |
|     auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
 | |
| 
 | |
|     // Create ground truth data
 | |
|     vector<Point3> points = createPoints();
 | |
|     vector<Pose3> poses = createPoses();
 | |
| 
 | |
|     // Set the parameters
 | |
|     ISAM2Params parameters;
 | |
|     parameters.relinearizeThreshold = 0.01;
 | |
|     parameters.relinearizeSkip = 1;
 | |
|     ISAM2 isam(parameters);
 | |
| 
 | |
|     // Create a Factor Graph and Values to hold the new data
 | |
|     NonlinearFactorGraph graph;
 | |
|     Values initialEstimate;
 | |
| 
 | |
|     // Loop over the poses, adding the observations to iSAM incrementally
 | |
|     for (size_t i = 0; i < poses.size(); ++i)
 | |
|     {
 | |
|         // Add factors for each landmark observation
 | |
|         for (size_t j = 0; j < points.size(); ++j)
 | |
|         {
 | |
|             SimpleCamera camera(poses[i], *K);
 | |
|             Point2 measurement = camera.project(points[j]);
 | |
|             graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3_S2>>(
 | |
|                 measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K);
 | |
|         }
 | |
| 
 | |
|         // Add an initial guess for the current pose
 | |
|         // Intentionally initialize the variables off from the ground truth
 | |
|         static Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
 | |
|                                 Point3(0.05, -0.10, 0.20));
 | |
|         initialEstimate.insert(Symbol('x', i), poses[i] * kDeltaPose);
 | |
| 
 | |
|         // Treat first iteration as special case
 | |
|         if (i == 0)
 | |
|         {
 | |
|             // Add a prior on pose x0, 30cm std on x,y,z and 0.1 rad on roll,pitch,yaw
 | |
|             static auto kPosePrior = noiseModel::Diagonal::Sigmas(
 | |
|                 (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))
 | |
|                     .finished());
 | |
|             graph.emplace_shared<PriorFactor<Pose3>>(Symbol('x', 0), poses[0],
 | |
|                                                      kPosePrior);
 | |
| 
 | |
|             // Add a prior on landmark l0
 | |
|             static auto kPointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
 | |
|             graph.emplace_shared<PriorFactor<Point3>>(Symbol('l', 0), points[0],
 | |
|                                                       kPointPrior);
 | |
| 
 | |
|             // Add initial guesses to all observed landmarks
 | |
|             // Intentionally initialize the variables off from the ground truth
 | |
|             static Point3 kDeltaPoint(-0.25, 0.20, 0.15);
 | |
|             for (size_t j = 0; j < points.size(); ++j)
 | |
|                 initialEstimate.insert<Point3>(Symbol('l', j), points[j] + kDeltaPoint);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             // Update iSAM with the new factors
 | |
|             isam.update(graph, initialEstimate);
 | |
| 
 | |
|             // Do an extra update to converge withing these 8 iterations
 | |
|             isam.update();
 | |
| 
 | |
|             // Optimize
 | |
|             Values currentEstimate = isam.calculateEstimate();
 | |
| 
 | |
|             // reset for next iteration
 | |
|             graph.resize(0);
 | |
|             initialEstimate.clear();
 | |
|         }
 | |
|     } // for loop
 | |
| 
 | |
|     auto result = isam.calculateEstimate();
 | |
|     EXPECT_LONGS_EQUAL(16, result.size());
 | |
|     for (size_t j = 0; j < points.size(); ++j)
 | |
|     {
 | |
|         Symbol key('l', j);
 | |
|         EXPECT(assert_equal(points[j], result.at<Point3>(key), 0.01));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main()
 | |
| {
 | |
|     TestResult tr;
 | |
|     return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |