gtsam/tests/testSymbolicBayesNet.cpp

60 lines
1.6 KiB
C++

/**
* @file testSymbolicBayesNet.cpp
* @brief Unit tests for a symbolic Bayes chain
* @author Frank Dellaert
*/
#include <boost/assign/list_inserter.hpp> // for 'insert()'
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <gtsam/CppUnitLite/TestHarness.h>
#define GTSAM_MAGIC_KEY
#include <gtsam/inference/Ordering.h>
#include <gtsam/slam/smallExample.h>
#include <gtsam/inference/SymbolicBayesNet.h>
#include <gtsam/inference/SymbolicFactorGraph.h>
using namespace std;
using namespace gtsam;
using namespace example;
Symbol _B_('B', 0), _L_('L', 0);
SymbolicConditional::shared_ptr
B(new SymbolicConditional(_B_)),
L(new SymbolicConditional(_L_, _B_));
/* ************************************************************************* */
TEST( SymbolicBayesNet, constructor )
{
// Create manually
SymbolicConditional::shared_ptr
x2(new SymbolicConditional("x2","l1", "x1")),
l1(new SymbolicConditional("l1","x1")),
x1(new SymbolicConditional("x1"));
SymbolicBayesNet expected;
expected.push_back(x2);
expected.push_back(l1);
expected.push_back(x1);
// Create from a factor graph
GaussianFactorGraph factorGraph = createGaussianFactorGraph();
SymbolicFactorGraph fg(factorGraph);
// eliminate it
Ordering ordering;
ordering += "x2","l1","x1";
SymbolicBayesNet actual = fg.eliminate(ordering);
CHECK(assert_equal(expected, actual));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */