gtsam/tests/testNonlinearEquality.cpp

282 lines
9.1 KiB
C++

/*
* @file testNonlinearEquality.cpp
* @author Alex Cunningham
*/
#include <gtsam/CppUnitLite/TestHarness.h>
#define GTSAM_MAGIC_KEY
#include <gtsam/inference/Key.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/linear/VectorConfig.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/NonlinearOptimizer-inl.h>
#include <gtsam/nonlinear/LieConfig-inl.h>
using namespace std;
using namespace gtsam;
typedef NonlinearEquality<VectorConfig,string,Vector> NLE;
typedef boost::shared_ptr<NLE> shared_nle;
typedef TypedSymbol<Pose2, 'x'> PoseKey;
typedef LieConfig<PoseKey, Pose2> PoseConfig;
typedef PriorFactor<PoseConfig, PoseKey, Pose2> PosePrior;
typedef NonlinearEquality<PoseConfig, PoseKey, Pose2> PoseNLE;
typedef boost::shared_ptr<PoseNLE> shared_poseNLE;
typedef NonlinearFactorGraph<PoseConfig> PoseGraph;
typedef NonlinearOptimizer<PoseGraph,PoseConfig> PoseOptimizer;
bool vector_compare(const Vector& a, const Vector& b) {
return equal_with_abs_tol(a, b, 1e-5);
}
/* ************************************************************************* */
TEST ( NonlinearEquality, linearization ) {
Symbol key = "x";
Vector value = Vector_(2, 1.0, 2.0);
VectorConfig linearize;
linearize.insert(key, value);
// create a nonlinear equality constraint
shared_nle nle(new NLE(key, value,vector_compare));
// check linearize
SharedDiagonal constraintModel = noiseModel::Constrained::All(2);
GaussianFactor expLF(key, eye(2), zero(2), constraintModel);
GaussianFactor::shared_ptr actualLF = nle->linearize(linearize);
CHECK(assert_equal(*actualLF, expLF));
}
/* ********************************************************************** */
TEST ( NonlinearEquality, linearization_pose ) {
PoseKey key(1);
Pose2 value;
PoseConfig config;
config.insert(key, value);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
GaussianFactor::shared_ptr actualLF = nle->linearize(config);
CHECK(true);
}
/* ********************************************************************** */
TEST ( NonlinearEquality, linearization_fail ) {
Symbol key = "x";
Vector value = Vector_(2, 1.0, 2.0);
Vector wrong = Vector_(2, 3.0, 4.0);
VectorConfig bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_nle nle(new NLE(key, value,vector_compare));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
/* ********************************************************************** */
TEST ( NonlinearEquality, linearization_fail_pose ) {
PoseKey key(1);
Pose2 value(2.0, 1.0, 2.0),
wrong(2.0, 3.0, 4.0);
PoseConfig bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
/* ********************************************************************** */
TEST ( NonlinearEquality, linearization_fail_pose_origin ) {
PoseKey key(1);
Pose2 value,
wrong(2.0, 3.0, 4.0);
PoseConfig bad_linearize;
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_poseNLE nle(new PoseNLE(key, value));
// check linearize to ensure that it fails for bad linearization points
CHECK_EXCEPTION(nle->linearize(bad_linearize), std::invalid_argument);
}
/* ************************************************************************* */
TEST ( NonlinearEquality, error ) {
Symbol key = "x";
Vector value = Vector_(2, 1.0, 2.0);
Vector wrong = Vector_(2, 3.0, 4.0);
VectorConfig feasible, bad_linearize;
feasible.insert(key, value);
bad_linearize.insert(key, wrong);
// create a nonlinear equality constraint
shared_nle nle(new NLE(key, value,vector_compare));
// check error function outputs
Vector actual = nle->unwhitenedError(feasible);
CHECK(assert_equal(actual, zero(2)));
actual = nle->unwhitenedError(bad_linearize);
CHECK(assert_equal(actual, repeat(2, std::numeric_limits<double>::infinity())));
}
/* ************************************************************************* */
TEST ( NonlinearEquality, equals ) {
string key1 = "x";
Vector value1 = Vector_(2, 1.0, 2.0);
Vector value2 = Vector_(2, 3.0, 4.0);
// create some constraints to compare
shared_nle nle1(new NLE(key1, value1,vector_compare));
shared_nle nle2(new NLE(key1, value1,vector_compare));
shared_nle nle3(new NLE(key1, value2,vector_compare));
// verify
CHECK(nle1->equals(*nle2)); // basic equality = true
CHECK(nle2->equals(*nle1)); // test symmetry of equals()
CHECK(!nle1->equals(*nle3)); // test config
}
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_vector ) {
Symbol key1 = "x";
Vector feasible1 = Vector_(3, 1.0, 2.0, 3.0);
double error_gain = 500.0;
NLE nle(key1, feasible1, error_gain,vector_compare);
// the unwhitened error should provide logmap to the feasible state
Vector badPoint1 = Vector_(3, 0.0, 2.0, 3.0);
Vector actVec = nle.evaluateError(badPoint1);
Vector expVec = Vector_(3, 1.0, 0.0, 0.0);
CHECK(assert_equal(expVec, actVec));
// the actual error should have a gain on it
VectorConfig config;
config.insert(key1, badPoint1);
double actError = nle.error(config);
DOUBLES_EQUAL(500.0, actError, 1e-9);
// check linearization
GaussianFactor::shared_ptr actLinFactor = nle.linearize(config);
Matrix A1 = eye(3,3);
Vector b = expVec;
SharedDiagonal model = noiseModel::Constrained::All(3);
GaussianFactor::shared_ptr expLinFactor(new GaussianFactor(key1, A1, b, model));
CHECK(assert_equal(*expLinFactor, *actLinFactor));
}
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_pose ) {
PoseKey key1(1);
Pose2 feasible1(1.0, 2.0, 3.0);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// the unwhitened error should provide logmap to the feasible state
Pose2 badPoint1(0.0, 2.0, 3.0);
Vector actVec = nle.evaluateError(badPoint1);
Vector expVec = Vector_(3, -0.989992, -0.14112, 0.0);
CHECK(assert_equal(expVec, actVec, 1e-5));
// the actual error should have a gain on it
PoseConfig config;
config.insert(key1, badPoint1);
double actError = nle.error(config);
DOUBLES_EQUAL(500.0, actError, 1e-9);
// check linearization
GaussianFactor::shared_ptr actLinFactor = nle.linearize(config);
Matrix A1 = eye(3,3);
Vector b = expVec;
SharedDiagonal model = noiseModel::Constrained::All(3);
GaussianFactor::shared_ptr expLinFactor(new GaussianFactor(key1, A1, b, model));
CHECK(assert_equal(*expLinFactor, *actLinFactor, 1e-5));
}
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_optimize ) {
PoseKey key1(1);
Pose2 feasible1(1.0, 2.0, 3.0);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// add to a graph
boost::shared_ptr<PoseGraph> graph(new PoseGraph());
graph->add(nle);
// initialize away from the ideal
Pose2 initPose(0.0, 2.0, 3.0);
boost::shared_ptr<PoseConfig> init(new PoseConfig());
init->insert(key1, initPose);
// optimize
boost::shared_ptr<Ordering> ord(new Ordering());
ord->push_back(key1);
PoseOptimizer::shared_solver solver(new PoseOptimizer::solver(ord));
PoseOptimizer optimizer(graph, init, solver);
double relThresh = 1e-5, absThresh = 1e-5;
PoseOptimizer result = optimizer.levenbergMarquardt(relThresh, absThresh, PoseOptimizer::SILENT);
// verify
PoseConfig expected;
expected.insert(key1, feasible1);
CHECK(assert_equal(expected, *result.config()));
}
/* ************************************************************************* */
TEST ( NonlinearEquality, allow_error_optimize_with_factors ) {
// create a hard constraint
PoseKey key1(1);
Pose2 feasible1(1.0, 2.0, 3.0);
// initialize away from the ideal
boost::shared_ptr<PoseConfig> init(new PoseConfig());
Pose2 initPose(0.0, 2.0, 3.0);
init->insert(key1, initPose);
double error_gain = 500.0;
PoseNLE nle(key1, feasible1, error_gain);
// create a soft prior that conflicts
PosePrior prior(key1, initPose, noiseModel::Isotropic::Sigma(3, 0.1));
// add to a graph
boost::shared_ptr<PoseGraph> graph(new PoseGraph());
graph->add(nle);
graph->add(prior);
// optimize
boost::shared_ptr<Ordering> ord(new Ordering());
ord->push_back(key1);
PoseOptimizer::shared_solver solver(new PoseOptimizer::solver(ord));
PoseOptimizer optimizer(graph, init, solver);
double relThresh = 1e-5, absThresh = 1e-5;
PoseOptimizer result = optimizer.levenbergMarquardt(relThresh, absThresh, PoseOptimizer::SILENT);
// verify
PoseConfig expected;
expected.insert(key1, feasible1);
CHECK(assert_equal(expected, *result.config()));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */