gtsam/python/gtsam/examples/IMUKittiExampleGPS.py

367 lines
14 KiB
Python

"""
Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BENCHMARK SUITE
Author: Varun Agrawal
"""
import argparse
from typing import List, Tuple
import gtsam
import numpy as np
from gtsam import ISAM2, Pose3, noiseModel
from gtsam.symbol_shorthand import B, V, X
GRAVITY = 9.8
class KittiCalibration:
"""Class to hold KITTI calibration info."""
def __init__(self, body_ptx: float, body_pty: float, body_ptz: float,
body_prx: float, body_pry: float, body_prz: float,
accelerometer_sigma: float, gyroscope_sigma: float,
integration_sigma: float, accelerometer_bias_sigma: float,
gyroscope_bias_sigma: float, average_delta_t: float):
self.bodyTimu = Pose3(gtsam.Rot3.RzRyRx(body_prx, body_pry, body_prz),
gtsam.Point3(body_ptx, body_pty, body_ptz))
self.accelerometer_sigma = accelerometer_sigma
self.gyroscope_sigma = gyroscope_sigma
self.integration_sigma = integration_sigma
self.accelerometer_bias_sigma = accelerometer_bias_sigma
self.gyroscope_bias_sigma = gyroscope_bias_sigma
self.average_delta_t = average_delta_t
class ImuMeasurement:
"""An instance of an IMU measurement."""
def __init__(self, time: float, dt: float, accelerometer: gtsam.Point3,
gyroscope: gtsam.Point3):
self.time = time
self.dt = dt
self.accelerometer = accelerometer
self.gyroscope = gyroscope
class GpsMeasurement:
"""An instance of a GPS measurement."""
def __init__(self, time: float, position: gtsam.Point3):
self.time = time
self.position = position
def loadImuData(imu_data_file: str) -> List[ImuMeasurement]:
"""Helper to load the IMU data."""
# Read IMU data
# Time dt accelX accelY accelZ omegaX omegaY omegaZ
imu_data_file = gtsam.findExampleDataFile(imu_data_file)
imu_measurements = []
print("-- Reading IMU measurements from file")
with open(imu_data_file, encoding='UTF-8') as imu_data:
data = imu_data.readlines()
for i in range(1, len(data)): # ignore the first line
time, dt, acc_x, acc_y, acc_z, gyro_x, gyro_y, gyro_z = map(
float, data[i].split(' '))
imu_measurement = ImuMeasurement(
time, dt, np.asarray([acc_x, acc_y, acc_z]),
np.asarray([gyro_x, gyro_y, gyro_z]))
imu_measurements.append(imu_measurement)
return imu_measurements
def loadGpsData(gps_data_file: str) -> List[GpsMeasurement]:
"""Helper to load the GPS data."""
# Read GPS data
# Time,X,Y,Z
gps_data_file = gtsam.findExampleDataFile(gps_data_file)
gps_measurements = []
print("-- Reading GPS measurements from file")
with open(gps_data_file, encoding='UTF-8') as gps_data:
data = gps_data.readlines()
for i in range(1, len(data)):
time, x, y, z = map(float, data[i].split(','))
gps_measurement = GpsMeasurement(time, np.asarray([x, y, z]))
gps_measurements.append(gps_measurement)
return gps_measurements
def loadKittiData(
imu_data_file: str = "KittiEquivBiasedImu.txt",
gps_data_file: str = "KittiGps_converted.txt",
imu_metadata_file: str = "KittiEquivBiasedImu_metadata.txt"
) -> Tuple[KittiCalibration, List[ImuMeasurement], List[GpsMeasurement]]:
"""
Load the KITTI Dataset.
"""
# Read IMU metadata and compute relative sensor pose transforms
# BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma
# GyroscopeSigma IntegrationSigma AccelerometerBiasSigma GyroscopeBiasSigma
# AverageDeltaT
imu_metadata_file = gtsam.findExampleDataFile(imu_metadata_file)
with open(imu_metadata_file, encoding='UTF-8') as imu_metadata:
print("-- Reading sensor metadata")
line = imu_metadata.readline() # Ignore the first line
line = imu_metadata.readline().strip()
data = list(map(float, line.split(' ')))
kitti_calibration = KittiCalibration(*data)
print("IMU metadata:", data)
imu_measurements = loadImuData(imu_data_file)
gps_measurements = loadGpsData(gps_data_file)
return kitti_calibration, imu_measurements, gps_measurements
def getImuParams(kitti_calibration: KittiCalibration):
"""Get the IMU parameters from the KITTI calibration data."""
w_coriolis = np.zeros(3)
# Set IMU preintegration parameters
measured_acc_cov = np.eye(3) * np.power(
kitti_calibration.accelerometer_sigma, 2)
measured_omega_cov = np.eye(3) * np.power(
kitti_calibration.gyroscope_sigma, 2)
# error committed in integrating position from velocities
integration_error_cov = np.eye(3) * np.power(
kitti_calibration.integration_sigma, 2)
imu_params = gtsam.PreintegrationParams.MakeSharedU(GRAVITY)
# acc white noise in continuous
imu_params.setAccelerometerCovariance(measured_acc_cov)
# integration uncertainty continuous
imu_params.setIntegrationCovariance(integration_error_cov)
# gyro white noise in continuous
imu_params.setGyroscopeCovariance(measured_omega_cov)
imu_params.setOmegaCoriolis(w_coriolis)
return imu_params
def save_results(isam: gtsam.ISAM2, output_filename: str, first_gps_pose: int,
gps_measurements: List[GpsMeasurement]):
"""Write the results from `isam` to `output_filename`."""
# Save results to file
print("Writing results to file...")
with open(output_filename, 'w', encoding='UTF-8') as fp_out:
fp_out.write(
"#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m)\n")
result = isam.calculateEstimate()
for i in range(first_gps_pose, len(gps_measurements)):
pose_key = X(i)
vel_key = V(i)
bias_key = B(i)
pose = result.atPose3(pose_key)
velocity = result.atVector(vel_key)
bias = result.atConstantBias(bias_key)
pose_quat = pose.rotation().toQuaternion()
gps = gps_measurements[i].position
print(f"State at #{i}")
print(f"Pose:\n{pose}")
print(f"Velocity:\n{velocity}")
print(f"Bias:\n{bias}")
fp_out.write("{},{},{},{},{},{},{},{},{},{},{}\n".format(
gps_measurements[i].time, pose.x(), pose.y(), pose.z(),
pose_quat.x(), pose_quat.y(), pose_quat.z(), pose_quat.w(),
gps[0], gps[1], gps[2]))
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument("--output_filename",
default="IMUKittiExampleGPSResults.csv")
return parser.parse_args()
def optimize(gps_measurements: List[GpsMeasurement],
imu_measurements: List[ImuMeasurement],
sigma_init_x: gtsam.noiseModel.Diagonal,
sigma_init_v: gtsam.noiseModel.Diagonal,
sigma_init_b: gtsam.noiseModel.Diagonal,
noise_model_gps: gtsam.noiseModel.Diagonal,
kitti_calibration: KittiCalibration, first_gps_pose: int,
gps_skip: int) -> gtsam.ISAM2:
"""Run ISAM2 optimization on the measurements."""
# Set initial conditions for the estimated trajectory
# initial pose is the reference frame (navigation frame)
current_pose_global = Pose3(gtsam.Rot3(),
gps_measurements[first_gps_pose].position)
# the vehicle is stationary at the beginning at position 0,0,0
current_velocity_global = np.zeros(3)
current_bias = gtsam.imuBias.ConstantBias() # init with zero bias
imu_params = getImuParams(kitti_calibration)
# Set ISAM2 parameters and create ISAM2 solver object
isam_params = gtsam.ISAM2Params()
isam_params.setFactorization("CHOLESKY")
isam_params.setRelinearizeSkip(10)
isam = gtsam.ISAM2(isam_params)
# Create the factor graph and values object that will store new factors and
# values to add to the incremental graph
new_factors = gtsam.NonlinearFactorGraph()
# values storing the initial estimates of new nodes in the factor graph
new_values = gtsam.Values()
# Main loop:
# (1) we read the measurements
# (2) we create the corresponding factors in the graph
# (3) we solve the graph to obtain and optimal estimate of robot trajectory
print("-- Starting main loop: inference is performed at each time step, "
"but we plot trajectory every 10 steps")
j = 0
included_imu_measurement_count = 0
for i in range(first_gps_pose, len(gps_measurements)):
# At each non=IMU measurement we initialize a new node in the graph
current_pose_key = X(i)
current_vel_key = V(i)
current_bias_key = B(i)
t = gps_measurements[i].time
if i == first_gps_pose:
# Create initial estimate and prior on initial pose, velocity, and biases
new_values.insert(current_pose_key, current_pose_global)
new_values.insert(current_vel_key, current_velocity_global)
new_values.insert(current_bias_key, current_bias)
new_factors.addPriorPose3(current_pose_key, current_pose_global,
sigma_init_x)
new_factors.addPriorVector(current_vel_key,
current_velocity_global, sigma_init_v)
new_factors.addPriorConstantBias(current_bias_key, current_bias,
sigma_init_b)
else:
t_previous = gps_measurements[i - 1].time
# Summarize IMU data between the previous GPS measurement and now
current_summarized_measurement = gtsam.PreintegratedImuMeasurements(
imu_params, current_bias)
while (j < len(imu_measurements)
and imu_measurements[j].time <= t):
if imu_measurements[j].time >= t_previous:
current_summarized_measurement.integrateMeasurement(
imu_measurements[j].accelerometer,
imu_measurements[j].gyroscope, imu_measurements[j].dt)
included_imu_measurement_count += 1
j += 1
# Create IMU factor
previous_pose_key = X(i - 1)
previous_vel_key = V(i - 1)
previous_bias_key = B(i - 1)
new_factors.push_back(
gtsam.ImuFactor(previous_pose_key, previous_vel_key,
current_pose_key, current_vel_key,
previous_bias_key,
current_summarized_measurement))
# Bias evolution as given in the IMU metadata
sigma_between_b = gtsam.noiseModel.Diagonal.Sigmas(
np.asarray([
np.sqrt(included_imu_measurement_count) *
kitti_calibration.accelerometer_bias_sigma
] * 3 + [
np.sqrt(included_imu_measurement_count) *
kitti_calibration.gyroscope_bias_sigma
] * 3))
new_factors.push_back(
gtsam.BetweenFactorConstantBias(previous_bias_key,
current_bias_key,
gtsam.imuBias.ConstantBias(),
sigma_between_b))
# Create GPS factor
gps_pose = Pose3(current_pose_global.rotation(),
gps_measurements[i].position)
if (i % gps_skip) == 0:
new_factors.addPriorPose3(current_pose_key, gps_pose,
noise_model_gps)
new_values.insert(current_pose_key, gps_pose)
print(f"############ POSE INCLUDED AT TIME {t} ############")
print(gps_pose.translation(), "\n")
else:
new_values.insert(current_pose_key, current_pose_global)
# Add initial values for velocity and bias based on the previous
# estimates
new_values.insert(current_vel_key, current_velocity_global)
new_values.insert(current_bias_key, current_bias)
# Update solver
# =======================================================================
# We accumulate 2*GPSskip GPS measurements before updating the solver at
# first so that the heading becomes observable.
if i > (first_gps_pose + 2 * gps_skip):
print(f"############ NEW FACTORS AT TIME {t:.6f} ############")
new_factors.print()
isam.update(new_factors, new_values)
# Reset the newFactors and newValues list
new_factors.resize(0)
new_values.clear()
# Extract the result/current estimates
result = isam.calculateEstimate()
current_pose_global = result.atPose3(current_pose_key)
current_velocity_global = result.atVector(current_vel_key)
current_bias = result.atConstantBias(current_bias_key)
print(f"############ POSE AT TIME {t} ############")
current_pose_global.print()
print("\n")
return isam
def main():
"""Main runner."""
args = parse_args()
kitti_calibration, imu_measurements, gps_measurements = loadKittiData()
if not kitti_calibration.bodyTimu.equals(Pose3(), 1e-8):
raise ValueError(
"Currently only support IMUinBody is identity, i.e. IMU and body frame are the same"
)
# Configure different variables
first_gps_pose = 1
gps_skip = 10
# Configure noise models
noise_model_gps = noiseModel.Diagonal.Precisions(
np.asarray([0, 0, 0] + [1.0 / 0.07] * 3))
sigma_init_x = noiseModel.Diagonal.Precisions(
np.asarray([0, 0, 0, 1, 1, 1]))
sigma_init_v = noiseModel.Diagonal.Sigmas(np.ones(3) * 1000.0)
sigma_init_b = noiseModel.Diagonal.Sigmas(
np.asarray([0.1] * 3 + [5.00e-05] * 3))
isam = optimize(gps_measurements, imu_measurements, sigma_init_x,
sigma_init_v, sigma_init_b, noise_model_gps,
kitti_calibration, first_gps_pose, gps_skip)
save_results(isam, args.output_filename, first_gps_pose, gps_measurements)
if __name__ == "__main__":
main()