gtsam/gtsam/nonlinear/tests/testFunctorizedFactor.cpp

410 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------1-------------------------------------------
*/
/**
* @file testFunctorizedFactor.cpp
* @date May 31, 2020
* @author Varun Agrawal
* @brief unit tests for FunctorizedFactor class
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/basis/Basis.h>
#include <gtsam/basis/BasisFactors.h>
#include <gtsam/basis/Chebyshev2.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/FunctorizedFactor.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/factorTesting.h>
using namespace std;
using namespace gtsam;
// Key for FunctorizedFactor
Key key = Symbol('X', 0);
// Keys for FunctorizedFactor2
Key keyA = Symbol('A', 0);
Key keyx = Symbol('x', 0);
auto model = noiseModel::Isotropic::Sigma(9, 1);
auto model2 = noiseModel::Isotropic::Sigma(3, 1);
/// Functor that takes a matrix and multiplies every element by m
class MultiplyFunctor {
double m_; ///< simple multiplier
public:
MultiplyFunctor(double m) : m_(m) {}
Matrix operator()(const Matrix &X,
OptionalJacobian<-1, -1> H = boost::none) const {
if (H) *H = m_ * Matrix::Identity(X.rows() * X.cols(), X.rows() * X.cols());
return m_ * X;
}
};
/// Functor that performs Ax where A is a matrix and x is a vector.
class ProjectionFunctor {
public:
Vector operator()(const Matrix &A, const Vector &x,
OptionalJacobian<-1, -1> H1 = boost::none,
OptionalJacobian<-1, -1> H2 = boost::none) const {
if (H1) {
H1->resize(x.size(), A.size());
*H1 << I_3x3, I_3x3, I_3x3;
}
if (H2) *H2 = A;
return A * x;
}
};
/* ************************************************************************* */
// Test identity operation for FunctorizedFactor.
TEST(FunctorizedFactor, Identity) {
Matrix X = Matrix::Identity(3, 3), measurement = Matrix::Identity(3, 3);
double multiplier = 1.0;
auto functor = MultiplyFunctor(multiplier);
auto factor = MakeFunctorizedFactor<Matrix>(key, measurement, model, functor);
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
// Test FunctorizedFactor with multiplier value of 2.
TEST(FunctorizedFactor, Multiply2) {
double multiplier = 2.0;
Matrix X = Matrix::Identity(3, 3);
Matrix measurement = multiplier * Matrix::Identity(3, 3);
auto factor = MakeFunctorizedFactor<Matrix>(key, measurement, model,
MultiplyFunctor(multiplier));
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
// Test equality function for FunctorizedFactor.
TEST(FunctorizedFactor, Equality) {
Matrix measurement = Matrix::Identity(2, 2);
double multiplier = 2.0;
auto factor1 = MakeFunctorizedFactor<Matrix>(key, measurement, model,
MultiplyFunctor(multiplier));
auto factor2 = MakeFunctorizedFactor<Matrix>(key, measurement, model,
MultiplyFunctor(multiplier));
EXPECT(factor1.equals(factor2));
}
/* ************************************************************************* */
// Test Jacobians of FunctorizedFactor.
TEST(FunctorizedFactor, Jacobians) {
Matrix X = Matrix::Identity(3, 3);
Matrix actualH;
double multiplier = 2.0;
auto factor =
MakeFunctorizedFactor<Matrix>(key, X, model, MultiplyFunctor(multiplier));
Values values;
values.insert<Matrix>(key, X);
// Check Jacobians
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
/* ************************************************************************* */
// Test print result of FunctorizedFactor.
TEST(FunctorizedFactor, Print) {
Matrix X = Matrix::Identity(2, 2);
double multiplier = 2.0;
auto factor =
MakeFunctorizedFactor<Matrix>(key, X, model, MultiplyFunctor(multiplier));
string expected =
" keys = { X0 }\n"
" noise model: unit (9) \n"
"FunctorizedFactor(X0)\n"
" measurement: [\n"
" 1, 0;\n"
" 0, 1\n"
"]\n"
" noise model sigmas: 1 1 1 1 1 1 1 1 1\n";
EXPECT(assert_print_equal(expected, factor));
}
/* ************************************************************************* */
// Test FunctorizedFactor using a std::function type.
TEST(FunctorizedFactor, Functional) {
double multiplier = 2.0;
Matrix X = Matrix::Identity(3, 3);
Matrix measurement = multiplier * Matrix::Identity(3, 3);
std::function<Matrix(Matrix, boost::optional<Matrix &>)> functional =
MultiplyFunctor(multiplier);
auto factor =
MakeFunctorizedFactor<Matrix>(key, measurement, model, functional);
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
// Test FunctorizedFactor with a lambda function.
TEST(FunctorizedFactor, Lambda) {
double multiplier = 2.0;
Matrix X = Matrix::Identity(3, 3);
Matrix measurement = multiplier * Matrix::Identity(3, 3);
auto lambda = [multiplier](const Matrix &X,
OptionalJacobian<-1, -1> H = boost::none) {
if (H)
*H = multiplier *
Matrix::Identity(X.rows() * X.cols(), X.rows() * X.cols());
return multiplier * X;
};
// FunctorizedFactor<Matrix> factor(key, measurement, model, lambda);
auto factor = MakeFunctorizedFactor<Matrix>(key, measurement, model, lambda);
Vector error = factor.evaluateError(X);
EXPECT(assert_equal(Vector::Zero(9), error, 1e-9));
}
/* ************************************************************************* */
// Test identity operation for FunctorizedFactor2.
TEST(FunctorizedFactor, Identity2) {
// x = Ax since A is I_3x3
Matrix A = Matrix::Identity(3, 3);
Vector x = Vector::Ones(3);
auto functor = ProjectionFunctor();
auto factor =
MakeFunctorizedFactor2<Matrix, Vector>(keyA, keyx, x, model2, functor);
Vector error = factor.evaluateError(A, x);
EXPECT(assert_equal(Vector::Zero(3), error, 1e-9));
}
/* ************************************************************************* */
// Test Jacobians of FunctorizedFactor2.
TEST(FunctorizedFactor, Jacobians2) {
Matrix A = Matrix::Identity(3, 3);
Vector x = Vector::Ones(3);
Matrix actualH1, actualH2;
auto factor = MakeFunctorizedFactor2<Matrix, Vector>(keyA, keyx, x, model2,
ProjectionFunctor());
Values values;
values.insert<Matrix>(keyA, A);
values.insert<Vector>(keyx, x);
// Check Jacobians
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-7, 1e-5);
}
/* ************************************************************************* */
// Test FunctorizedFactor2 using a std::function type.
TEST(FunctorizedFactor, Functional2) {
Matrix A = Matrix::Identity(3, 3);
Vector3 x(1, 2, 3);
Vector measurement = A * x;
std::function<Matrix(Matrix, Matrix, boost::optional<Matrix &>,
boost::optional<Matrix &>)>
functional = ProjectionFunctor();
auto factor = MakeFunctorizedFactor2<Matrix, Vector>(keyA, keyx, measurement,
model2, functional);
Vector error = factor.evaluateError(A, x);
EXPECT(assert_equal(Vector::Zero(3), error, 1e-9));
}
/* ************************************************************************* */
// Test FunctorizedFactor2 with a lambda function.
TEST(FunctorizedFactor, Lambda2) {
Matrix A = Matrix::Identity(3, 3);
Vector3 x = Vector3(1, 2, 3);
Matrix measurement = A * x;
auto lambda = [](const Matrix &A, const Vector &x,
OptionalJacobian<-1, -1> H1 = boost::none,
OptionalJacobian<-1, -1> H2 = boost::none) {
if (H1) {
H1->resize(x.size(), A.size());
*H1 << I_3x3, I_3x3, I_3x3;
}
if (H2) *H2 = A;
return A * x;
};
// FunctorizedFactor<Matrix> factor(key, measurement, model, lambda);
auto factor = MakeFunctorizedFactor2<Matrix, Vector>(keyA, keyx, measurement,
model2, lambda);
Vector error = factor.evaluateError(A, x);
EXPECT(assert_equal(Vector::Zero(3), error, 1e-9));
}
const size_t N = 2;
//******************************************************************************
TEST(FunctorizedFactor, Print2) {
const size_t M = 1;
Vector measured = Vector::Ones(M) * 42;
auto model = noiseModel::Isotropic::Sigma(M, 1.0);
VectorEvaluationFactor<Chebyshev2, M> priorFactor(key, measured, model, N, 0);
string expected =
" keys = { X0 }\n"
" noise model: unit (1) \n"
"FunctorizedFactor(X0)\n"
" measurement: [\n"
" 42\n"
"]\n"
" noise model sigmas: 1\n";
EXPECT(assert_print_equal(expected, priorFactor));
}
//******************************************************************************
TEST(FunctorizedFactor, VectorEvaluationFactor) {
const size_t M = 4;
Vector measured = Vector::Zero(M);
auto model = noiseModel::Isotropic::Sigma(M, 1.0);
VectorEvaluationFactor<Chebyshev2, M> priorFactor(key, measured, model, N, 0);
NonlinearFactorGraph graph;
graph.add(priorFactor);
ParameterMatrix<M> stateMatrix(N);
Values initial;
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
//******************************************************************************
TEST(FunctorizedFactor, VectorComponentFactor) {
const int P = 4;
const size_t i = 2;
const double measured = 0.0, t = 3.0, a = 2.0, b = 4.0;
auto model = noiseModel::Isotropic::Sigma(1, 1.0);
VectorComponentFactor<Chebyshev2, P> controlPrior(key, measured, model, N, i,
t, a, b);
NonlinearFactorGraph graph;
graph.add(controlPrior);
ParameterMatrix<P> stateMatrix(N);
Values initial;
initial.insert<ParameterMatrix<P>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
//******************************************************************************
TEST(FunctorizedFactor, VecDerivativePrior) {
const size_t M = 4;
Vector measured = Vector::Zero(M);
auto model = noiseModel::Isotropic::Sigma(M, 1.0);
VectorDerivativeFactor<Chebyshev2, M> vecDPrior(key, measured, model, N, 0);
NonlinearFactorGraph graph;
graph.add(vecDPrior);
ParameterMatrix<M> stateMatrix(N);
Values initial;
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
//******************************************************************************
TEST(FunctorizedFactor, ComponentDerivativeFactor) {
const size_t M = 4;
double measured = 0;
auto model = noiseModel::Isotropic::Sigma(1, 1.0);
ComponentDerivativeFactor<Chebyshev2, M> controlDPrior(key, measured, model,
N, 0, 0);
NonlinearFactorGraph graph;
graph.add(controlDPrior);
Values initial;
ParameterMatrix<M> stateMatrix(N);
initial.insert<ParameterMatrix<M>>(key, stateMatrix);
LevenbergMarquardtParams parameters;
parameters.verbosity = NonlinearOptimizerParams::SILENT;
parameters.verbosityLM = LevenbergMarquardtParams::SILENT;
parameters.setMaxIterations(20);
Values result =
LevenbergMarquardtOptimizer(graph, initial, parameters).optimize();
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-9);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */