370 lines
11 KiB
C++
370 lines
11 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SO3.cpp
|
|
* @brief 3*3 matrix representation of SO(3)
|
|
* @author Frank Dellaert
|
|
* @author Luca Carlone
|
|
* @author Duy Nguyen Ta
|
|
* @date December 2014
|
|
*/
|
|
|
|
#include <gtsam/base/concepts.h>
|
|
#include <gtsam/geometry/SO3.h>
|
|
|
|
#include <Eigen/SVD>
|
|
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <limits>
|
|
|
|
namespace gtsam {
|
|
|
|
//******************************************************************************
|
|
namespace so3 {
|
|
|
|
GTSAM_EXPORT Matrix99 Dcompose(const SO3& Q) {
|
|
Matrix99 H;
|
|
auto R = Q.matrix();
|
|
H << I_3x3 * R(0, 0), I_3x3 * R(1, 0), I_3x3 * R(2, 0), //
|
|
I_3x3 * R(0, 1), I_3x3 * R(1, 1), I_3x3 * R(2, 1), //
|
|
I_3x3 * R(0, 2), I_3x3 * R(1, 2), I_3x3 * R(2, 2);
|
|
return H;
|
|
}
|
|
|
|
GTSAM_EXPORT Matrix3 compose(const Matrix3& M, const SO3& R, OptionalJacobian<9, 9> H) {
|
|
Matrix3 MR = M * R.matrix();
|
|
if (H) *H = Dcompose(R);
|
|
return MR;
|
|
}
|
|
|
|
void ExpmapFunctor::init(bool nearZeroApprox) {
|
|
nearZero =
|
|
nearZeroApprox || (theta2 <= std::numeric_limits<double>::epsilon());
|
|
if (!nearZero) {
|
|
sin_theta = std::sin(theta);
|
|
const double s2 = std::sin(theta / 2.0);
|
|
one_minus_cos = 2.0 * s2 * s2; // numerically better than [1 - cos(theta)]
|
|
}
|
|
}
|
|
|
|
ExpmapFunctor::ExpmapFunctor(const Vector3& omega, bool nearZeroApprox)
|
|
: theta2(omega.dot(omega)), theta(std::sqrt(theta2)) {
|
|
const double wx = omega.x(), wy = omega.y(), wz = omega.z();
|
|
W << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0;
|
|
init(nearZeroApprox);
|
|
if (!nearZero) {
|
|
K = W / theta;
|
|
KK = K * K;
|
|
}
|
|
}
|
|
|
|
ExpmapFunctor::ExpmapFunctor(const Vector3& axis, double angle,
|
|
bool nearZeroApprox)
|
|
: theta2(angle * angle), theta(angle) {
|
|
const double ax = axis.x(), ay = axis.y(), az = axis.z();
|
|
K << 0.0, -az, +ay, +az, 0.0, -ax, -ay, +ax, 0.0;
|
|
W = K * angle;
|
|
init(nearZeroApprox);
|
|
if (!nearZero) {
|
|
KK = K * K;
|
|
}
|
|
}
|
|
|
|
SO3 ExpmapFunctor::expmap() const {
|
|
if (nearZero)
|
|
return SO3(I_3x3 + W);
|
|
else
|
|
return SO3(I_3x3 + sin_theta * K + one_minus_cos * KK);
|
|
}
|
|
|
|
DexpFunctor::DexpFunctor(const Vector3& omega, bool nearZeroApprox)
|
|
: ExpmapFunctor(omega, nearZeroApprox), omega(omega) {
|
|
if (nearZero) {
|
|
dexp_ = I_3x3 - 0.5 * W;
|
|
} else {
|
|
a = one_minus_cos / theta;
|
|
b = 1.0 - sin_theta / theta;
|
|
dexp_ = I_3x3 - a * K + b * KK;
|
|
}
|
|
}
|
|
|
|
Vector3 DexpFunctor::applyDexp(const Vector3& v, OptionalJacobian<3, 3> H1,
|
|
OptionalJacobian<3, 3> H2) const {
|
|
if (H1) {
|
|
if (nearZero) {
|
|
*H1 = 0.5 * skewSymmetric(v);
|
|
} else {
|
|
// TODO(frank): Iserles hints that there should be a form I + c*K + d*KK
|
|
const Vector3 Kv = K * v;
|
|
const double Da = (sin_theta - 2.0 * a) / theta2;
|
|
const double Db = (one_minus_cos - 3.0 * b) / theta2;
|
|
*H1 = (Db * K - Da * I_3x3) * Kv * omega.transpose() -
|
|
skewSymmetric(Kv * b / theta) +
|
|
(a * I_3x3 - b * K) * skewSymmetric(v / theta);
|
|
}
|
|
}
|
|
if (H2) *H2 = dexp_;
|
|
return dexp_ * v;
|
|
}
|
|
|
|
Vector3 DexpFunctor::applyInvDexp(const Vector3& v, OptionalJacobian<3, 3> H1,
|
|
OptionalJacobian<3, 3> H2) const {
|
|
const Matrix3 invDexp = dexp_.inverse();
|
|
const Vector3 c = invDexp * v;
|
|
if (H1) {
|
|
Matrix3 D_dexpv_omega;
|
|
applyDexp(c, D_dexpv_omega); // get derivative H of forward mapping
|
|
*H1 = -invDexp * D_dexpv_omega;
|
|
}
|
|
if (H2) *H2 = invDexp;
|
|
return c;
|
|
}
|
|
|
|
} // namespace so3
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::AxisAngle(const Vector3& axis, double theta) {
|
|
return so3::ExpmapFunctor(axis, theta).expmap();
|
|
}
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::ClosestTo(const Matrix3& M) {
|
|
Eigen::JacobiSVD<Matrix3> svd(M, Eigen::ComputeFullU | Eigen::ComputeFullV);
|
|
const auto& U = svd.matrixU();
|
|
const auto& V = svd.matrixV();
|
|
const double det = (U * V.transpose()).determinant();
|
|
return SO3(U * Vector3(1, 1, det).asDiagonal() * V.transpose());
|
|
}
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::ChordalMean(const std::vector<SO3>& rotations) {
|
|
// See Hartley13ijcv:
|
|
// Cost function C(R) = \sum sqr(|R-R_i|_F)
|
|
// Closed form solution = ClosestTo(C_e), where C_e = \sum R_i !!!!
|
|
Matrix3 C_e{Z_3x3};
|
|
for (const auto& R_i : rotations) {
|
|
C_e += R_i.matrix();
|
|
}
|
|
return ClosestTo(C_e);
|
|
}
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Matrix3 SO3::Hat(const Vector3& xi) {
|
|
// skew symmetric matrix X = xi^
|
|
Matrix3 Y = Z_3x3;
|
|
Y(0, 1) = -xi(2);
|
|
Y(0, 2) = +xi(1);
|
|
Y(1, 2) = -xi(0);
|
|
return Y - Y.transpose();
|
|
}
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector3 SO3::Vee(const Matrix3& X) {
|
|
Vector3 xi;
|
|
xi(0) = -X(1, 2);
|
|
xi(1) = +X(0, 2);
|
|
xi(2) = -X(0, 1);
|
|
return xi;
|
|
}
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Matrix3 SO3::AdjointMap() const {
|
|
return matrix_;
|
|
}
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::Expmap(const Vector3& omega, ChartJacobian H) {
|
|
if (H) {
|
|
so3::DexpFunctor impl(omega);
|
|
*H = impl.dexp();
|
|
return impl.expmap();
|
|
} else {
|
|
return so3::ExpmapFunctor(omega).expmap();
|
|
}
|
|
}
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Matrix3 SO3::ExpmapDerivative(const Vector3& omega) {
|
|
return so3::DexpFunctor(omega).dexp();
|
|
}
|
|
|
|
//******************************************************************************
|
|
/* Right Jacobian for Log map in SO(3) - equation (10.86) and following
|
|
equations in G.S. Chirikjian, "Stochastic Models, Information Theory, and Lie
|
|
Groups", Volume 2, 2008.
|
|
|
|
logmap( Rhat * expmap(omega) ) \approx logmap(Rhat) + Jrinv * omega
|
|
|
|
where Jrinv = LogmapDerivative(omega). This maps a perturbation on the
|
|
manifold (expmap(omega)) to a perturbation in the tangent space (Jrinv *
|
|
omega)
|
|
*/
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Matrix3 SO3::LogmapDerivative(const Vector3& omega) {
|
|
using std::cos;
|
|
using std::sin;
|
|
|
|
double theta2 = omega.dot(omega);
|
|
if (theta2 <= std::numeric_limits<double>::epsilon()) return I_3x3;
|
|
double theta = std::sqrt(theta2); // rotation angle
|
|
|
|
// element of Lie algebra so(3): W = omega^
|
|
const Matrix3 W = Hat(omega);
|
|
return I_3x3 + 0.5 * W +
|
|
(1 / (theta * theta) - (1 + cos(theta)) / (2 * theta * sin(theta))) *
|
|
W * W;
|
|
}
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector3 SO3::Logmap(const SO3& Q, ChartJacobian H) {
|
|
using std::sin;
|
|
using std::sqrt;
|
|
|
|
// note switch to base 1
|
|
const Matrix3& R = Q.matrix();
|
|
const double &R11 = R(0, 0), R12 = R(0, 1), R13 = R(0, 2);
|
|
const double &R21 = R(1, 0), R22 = R(1, 1), R23 = R(1, 2);
|
|
const double &R31 = R(2, 0), R32 = R(2, 1), R33 = R(2, 2);
|
|
|
|
// Get trace(R)
|
|
const double tr = R.trace();
|
|
|
|
Vector3 omega;
|
|
|
|
// when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc.
|
|
// we do something special
|
|
if (tr + 1.0 < 1e-3) {
|
|
if (R33 > R22 && R33 > R11) {
|
|
// R33 is the largest diagonal, a=3, b=1, c=2
|
|
const double W = R21 - R12;
|
|
const double Q1 = 2.0 + 2.0 * R33;
|
|
const double Q2 = R31 + R13;
|
|
const double Q3 = R23 + R32;
|
|
const double r = sqrt(Q1);
|
|
const double one_over_r = 1 / r;
|
|
const double norm = sqrt(Q1*Q1 + Q2*Q2 + Q3*Q3 + W*W);
|
|
const double sgn_w = W < 0 ? -1.0 : 1.0;
|
|
const double mag = M_PI - (2 * sgn_w * W) / norm;
|
|
const double scale = 0.5 * one_over_r * mag;
|
|
omega = sgn_w * scale * Vector3(Q2, Q3, Q1);
|
|
} else if (R22 > R11) {
|
|
// R22 is the largest diagonal, a=2, b=3, c=1
|
|
const double W = R13 - R31;
|
|
const double Q1 = 2.0 + 2.0 * R22;
|
|
const double Q2 = R23 + R32;
|
|
const double Q3 = R12 + R21;
|
|
const double r = sqrt(Q1);
|
|
const double one_over_r = 1 / r;
|
|
const double norm = sqrt(Q1*Q1 + Q2*Q2 + Q3*Q3 + W*W);
|
|
const double sgn_w = W < 0 ? -1.0 : 1.0;
|
|
const double mag = M_PI - (2 * sgn_w * W) / norm;
|
|
const double scale = 0.5 * one_over_r * mag;
|
|
omega = sgn_w * scale * Vector3(Q3, Q1, Q2);
|
|
} else {
|
|
// R11 is the largest diagonal, a=1, b=2, c=3
|
|
const double W = R32 - R23;
|
|
const double Q1 = 2.0 + 2.0 * R11;
|
|
const double Q2 = R12 + R21;
|
|
const double Q3 = R31 + R13;
|
|
const double r = sqrt(Q1);
|
|
const double one_over_r = 1 / r;
|
|
const double norm = sqrt(Q1*Q1 + Q2*Q2 + Q3*Q3 + W*W);
|
|
const double sgn_w = W < 0 ? -1.0 : 1.0;
|
|
const double mag = M_PI - (2 * sgn_w * W) / norm;
|
|
const double scale = 0.5 * one_over_r * mag;
|
|
omega = sgn_w * scale * Vector3(Q1, Q2, Q3);
|
|
}
|
|
} else {
|
|
double magnitude;
|
|
const double tr_3 = tr - 3.0; // could be non-negative if the matrix is off orthogonal
|
|
if (tr_3 < -1e-6) {
|
|
// this is the normal case -1 < trace < 3
|
|
double theta = acos((tr - 1.0) / 2.0);
|
|
magnitude = theta / (2.0 * sin(theta));
|
|
} else {
|
|
// when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0)
|
|
// use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2)
|
|
// see https://github.com/borglab/gtsam/issues/746 for details
|
|
magnitude = 0.5 - tr_3 / 12.0 + tr_3*tr_3/60.0;
|
|
}
|
|
omega = magnitude * Vector3(R32 - R23, R13 - R31, R21 - R12);
|
|
}
|
|
|
|
if (H) *H = LogmapDerivative(omega);
|
|
return omega;
|
|
}
|
|
|
|
//******************************************************************************
|
|
// Chart at origin for SO3 is *not* Cayley but actual Expmap/Logmap
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
SO3 SO3::ChartAtOrigin::Retract(const Vector3& omega, ChartJacobian H) {
|
|
return Expmap(omega, H);
|
|
}
|
|
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector3 SO3::ChartAtOrigin::Local(const SO3& R, ChartJacobian H) {
|
|
return Logmap(R, H);
|
|
}
|
|
|
|
//******************************************************************************
|
|
// local vectorize
|
|
static Vector9 vec3(const Matrix3& R) {
|
|
return Eigen::Map<const Vector9>(R.data());
|
|
}
|
|
|
|
// so<3> generators
|
|
static std::vector<Matrix3> G3({SO3::Hat(Vector3::Unit(0)),
|
|
SO3::Hat(Vector3::Unit(1)),
|
|
SO3::Hat(Vector3::Unit(2))});
|
|
|
|
// vectorized generators
|
|
static const Matrix93 P3 =
|
|
(Matrix93() << vec3(G3[0]), vec3(G3[1]), vec3(G3[2])).finished();
|
|
|
|
//******************************************************************************
|
|
template <>
|
|
GTSAM_EXPORT
|
|
Vector9 SO3::vec(OptionalJacobian<9, 3> H) const {
|
|
const Matrix3& R = matrix_;
|
|
if (H) {
|
|
// As Luca calculated (for SO4), this is (I3 \oplus R) * P3
|
|
*H << R * P3.block<3, 3>(0, 0), R * P3.block<3, 3>(3, 0),
|
|
R * P3.block<3, 3>(6, 0);
|
|
}
|
|
return gtsam::vec3(R);
|
|
}
|
|
//******************************************************************************
|
|
|
|
} // end namespace gtsam
|