gtsam/gtsam/basis/ParameterMatrix.h

215 lines
6.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ParamaterMatrix.h
* @brief Define ParameterMatrix class which is used to store values at
* interpolation points.
* @author Varun Agrawal, Frank Dellaert
* @date September 21, 2020
*/
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/VectorSpace.h>
#include <iostream>
namespace gtsam {
/**
* A matrix abstraction of MxN values at the Basis points.
* This class serves as a wrapper over an Eigen matrix.
* @tparam M: The dimension of the type you wish to evaluate.
* @param N: the number of Basis points (e.g. Chebyshev points of the second
* kind).
*/
template <int M>
class ParameterMatrix {
using MatrixType = Eigen::Matrix<double, M, -1>;
private:
MatrixType matrix_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
enum { dimension = Eigen::Dynamic };
/**
* Create ParameterMatrix using the number of basis points.
* @param N: The number of basis points (the columns).
*/
ParameterMatrix(const size_t N) : matrix_(M, N) { matrix_.setZero(); }
/**
* Create ParameterMatrix from an MxN Eigen Matrix.
* @param matrix: An Eigen matrix used to initialze the ParameterMatrix.
*/
ParameterMatrix(const MatrixType& matrix) : matrix_(matrix) {}
/// Get the number of rows.
size_t rows() const { return matrix_.rows(); }
/// Get the number of columns.
size_t cols() const { return matrix_.cols(); }
/// Get the underlying matrix.
MatrixType matrix() const { return matrix_; }
/// Return the tranpose of the underlying matrix.
Eigen::Matrix<double, -1, M> transpose() const { return matrix_.transpose(); }
/**
* Get the matrix row specified by `index`.
* @param index: The row index to retrieve.
*/
Eigen::Matrix<double, 1, -1> row(size_t index) const {
return matrix_.row(index);
}
/**
* Set the matrix row specified by `index`.
* @param index: The row index to set.
*/
auto row(size_t index) -> Eigen::Block<MatrixType, 1, -1, false> {
return matrix_.row(index);
}
/**
* Get the matrix column specified by `index`.
* @param index: The column index to retrieve.
*/
Eigen::Matrix<double, M, 1> col(size_t index) const {
return matrix_.col(index);
}
/**
* Set the matrix column specified by `index`.
* @param index: The column index to set.
*/
auto col(size_t index) -> Eigen::Block<MatrixType, M, 1, true> {
return matrix_.col(index);
}
/**
* Set all matrix coefficients to zero.
*/
void setZero() { matrix_.setZero(); }
/**
* Add a ParameterMatrix to another.
* @param other: ParameterMatrix to add.
*/
ParameterMatrix<M> operator+(const ParameterMatrix<M>& other) const {
return ParameterMatrix<M>(matrix_ + other.matrix());
}
/**
* Add a MxN-sized vector to the ParameterMatrix.
* @param other: Vector which is reshaped and added.
*/
ParameterMatrix<M> operator+(
const Eigen::Matrix<double, -1, 1>& other) const {
// This form avoids a deep copy and instead typecasts `other`.
Eigen::Map<const MatrixType> other_(other.data(), M, cols());
return ParameterMatrix<M>(matrix_ + other_);
}
/**
* Subtract a ParameterMatrix from another.
* @param other: ParameterMatrix to subtract.
*/
ParameterMatrix<M> operator-(const ParameterMatrix<M>& other) const {
return ParameterMatrix<M>(matrix_ - other.matrix());
}
/**
* Subtract a MxN-sized vector from the ParameterMatrix.
* @param other: Vector which is reshaped and subracted.
*/
ParameterMatrix<M> operator-(
const Eigen::Matrix<double, -1, 1>& other) const {
Eigen::Map<const MatrixType> other_(other.data(), M, cols());
return ParameterMatrix<M>(matrix_ - other_);
}
/**
* Multiply ParameterMatrix with an Eigen matrix.
* @param other: Eigen matrix which should be multiplication compatible with
* the ParameterMatrix.
*/
MatrixType operator*(const Eigen::Matrix<double, -1, -1>& other) const {
return matrix_ * other;
}
/// @name Vector Space requirements, following LieMatrix
/// @{
/**
* Print the ParameterMatrix.
* @param s: The prepend string to add more contextual info.
*/
void print(const std::string& s = "") const {
std::cout << (s == "" ? s : s + " ") << matrix_ << std::endl;
}
/**
* Check for equality up to absolute tolerance.
* @param other: The ParameterMatrix to check equality with.
* @param tol: The absolute tolerance threshold.
*/
bool equals(const ParameterMatrix<M>& other, double tol = 1e-8) const {
return gtsam::equal_with_abs_tol(matrix_, other.matrix(), tol);
}
/// Returns dimensionality of the tangent space
inline size_t dim() const { return matrix_.size(); }
/// Convert to vector form, is done row-wise
inline Vector vector() const {
using RowMajor = Eigen::Matrix<double, -1, -1, Eigen::RowMajor>;
Vector result(matrix_.size());
Eigen::Map<RowMajor>(&result(0), rows(), cols()) = matrix_;
return result;
}
/** Identity function to satisfy VectorSpace traits.
*
* NOTE: The size at compile time is unknown so this identity is zero
* length and thus not valid.
*/
inline static ParameterMatrix identity() {
// throw std::runtime_error(
// "ParameterMatrix::identity(): Don't use this function");
return ParameterMatrix(0);
}
/// @}
};
// traits for ParameterMatrix
template <int M>
struct traits<ParameterMatrix<M>>
: public internal::VectorSpace<ParameterMatrix<M>> {};
/* ************************************************************************* */
// Stream operator that takes a ParameterMatrix. Used for printing.
template <int M>
inline std::ostream& operator<<(std::ostream& os,
const ParameterMatrix<M>& parameterMatrix) {
os << parameterMatrix.matrix();
return os;
}
} // namespace gtsam