gtsam/gtsam/slam/FrobeniusFactor.h

174 lines
5.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FrobeniusFactor.h
* @date March 2019
* @author Frank Dellaert
* @brief Various factors that minimize some Frobenius norm
*/
#pragma once
#include <gtsam/geometry/Rot2.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/SOn.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* When creating (any) FrobeniusFactor we can convert a Rot/Pose BetweenFactor
* noise model into a n-dimensional isotropic noise
* model used to weight the Frobenius norm.
* If the noise model passed is null we return a n-dimensional isotropic noise
* model with sigma=1.0.
* If not, we we check if the d-dimensional noise model on rotations is
* isotropic. If it is, we extend to 'n' dimensions, otherwise we throw an
* error. If the noise model is a robust error model, we use the sigmas of the
* underlying noise model.
*
* If defaultToUnit == false throws an exception on unexpected input.
*/
GTSAM_EXPORT SharedNoiseModel
ConvertNoiseModel(const SharedNoiseModel &model, size_t n,
bool defaultToUnit = true);
/**
* FrobeniusPrior calculates the Frobenius norm between a given matrix and an
* element of SO(3) or SO(4).
*/
template <class T>
class FrobeniusPrior : public NoiseModelFactorN<T> {
inline constexpr static auto N = T::LieAlgebra::RowsAtCompileTime;
inline constexpr static auto Dim = N * N;
using MatrixNN = Eigen::Matrix<double, N, N>;
Eigen::Matrix<double, Dim, 1> vecM_; ///< vectorized matrix to approximate
public:
// Provide access to the Matrix& version of evaluateError:
using NoiseModelFactor1<T>::evaluateError;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// Constructor
FrobeniusPrior(Key j, const MatrixNN& M,
const SharedNoiseModel& model = nullptr)
: NoiseModelFactorN<T>(ConvertNoiseModel(model, Dim), j) {
vecM_ << Eigen::Map<const Matrix>(M.data(), Dim, 1);
}
/// Error is just Frobenius norm between T element and vectorized matrix M.
Vector evaluateError(const T& g, OptionalMatrixType H) const override {
return g.vec(H) - vecM_; // Jacobian is computed only when needed.
}
};
/**
* FrobeniusFactor calculates the Frobenius norm between rotation matrices.
* The template argument can be any fixed-size SO<N>.
*/
template <class T>
class FrobeniusFactor : public NoiseModelFactorN<T, T> {
inline constexpr static auto N = T::LieAlgebra::RowsAtCompileTime;
inline constexpr static auto Dim = N * N;
public:
// Provide access to the Matrix& version of evaluateError:
using NoiseModelFactor2<T, T>::evaluateError;
/// Constructor
FrobeniusFactor(Key j1, Key j2, const SharedNoiseModel& model = nullptr)
: NoiseModelFactorN<T, T>(ConvertNoiseModel(model, Dim), j1, j2) {}
/// Error is just Frobenius norm between rotation matrices.
Vector evaluateError(const T& T1, const T& T2,
OptionalMatrixType H1, OptionalMatrixType H2) const override {
Vector error = T2.vec(H2) - T1.vec(H1);
if (H1) *H1 = -*H1;
return error;
}
};
/**
* FrobeniusBetweenFactor is a BetweenFactor that evaluates the Frobenius norm
* of the rotation error between measured and predicted (rather than the
* Logmap of the error). This factor is only defined for fixed-dimension types,
* and in fact only SO3 and SO4 really work, as we need SO<N>::AdjointMap.
*/
template <class T>
class FrobeniusBetweenFactor : public NoiseModelFactorN<T, T> {
T T12_; ///< measured rotation between T1 and T2
Eigen::Matrix<double, T::dimension, T::dimension>
T2hat_H_T1_; ///< fixed derivative of T2hat wrpt T1
inline constexpr static auto N = T::LieAlgebra::RowsAtCompileTime;
inline constexpr static auto Dim = N * N;
public:
// Provide access to the Matrix& version of evaluateError:
using NoiseModelFactor2<T, T>::evaluateError;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// @name Constructor
/// @{
/// Construct from two keys and measured rotation
FrobeniusBetweenFactor(Key j1, Key j2, const T& T12,
const SharedNoiseModel& model = nullptr)
: NoiseModelFactorN<T, T>(ConvertNoiseModel(model, Dim), j1, j2),
T12_(T12),
T2hat_H_T1_(T12.inverse().AdjointMap()) {}
/// @}
/// @name Testable
/// @{
/// print with optional string
void
print(const std::string &s,
const KeyFormatter &keyFormatter = DefaultKeyFormatter) const override {
std::cout << s << "FrobeniusBetweenFactor<" << demangle(typeid(T).name())
<< ">(" << keyFormatter(this->key1()) << ","
<< keyFormatter(this->key2()) << ")\n";
traits<T>::Print(T12_, " T12: ");
this->noiseModel_->print(" noise model: ");
}
/// assert equality up to a tolerance
bool equals(const NonlinearFactor &expected,
double tol = 1e-9) const override {
auto e = dynamic_cast<const FrobeniusBetweenFactor *>(&expected);
return e != nullptr && NoiseModelFactorN<T, T>::equals(*e, tol) &&
traits<T>::Equals(this->T12_, e->T12_, tol);
}
/// @}
/// @name NoiseModelFactorN methods
/// @{
/// Error is Frobenius norm between T1*T12 and T2.
Vector evaluateError(const T& T1, const T& T2,
OptionalMatrixType H1, OptionalMatrixType H2) const override {
const T T2hat = T1.compose(T12_);
Eigen::Matrix<double, Dim, T::dimension> vec_H_T2hat;
Vector error = T2.vec(H2) - T2hat.vec(H1 ? &vec_H_T2hat : nullptr);
if (H1) *H1 = -vec_H_T2hat * T2hat_H_T1_;
return error;
}
/// @}
};
} // namespace gtsam