gtsam/cpp/NonlinearOptimizer-inl.h

211 lines
7.3 KiB
C++

/**
* NonlinearOptimizer-inl.h
* This is a template definition file, include it where needed (only!)
* so that the appropriate code is generated and link errors avoided.
* @brief: Encapsulates nonlinear optimization state
* @Author: Frank Dellaert
* Created on: Sep 7, 2009
*/
#pragma once
#include <iostream>
#include <boost/tuple/tuple.hpp>
#include "NonlinearOptimizer.h"
using namespace std;
namespace gtsam {
/* ************************************************************************* */
bool check_convergence(double relativeErrorTreshold,
double absoluteErrorTreshold, double currentError, double newError,
int verbosity) {
// check if diverges
double absoluteDecrease = currentError - newError;
if (verbosity >= 2)
cout << "absoluteDecrease: " << absoluteDecrease << endl;
if (absoluteDecrease < 0)
throw overflow_error(
"NonlinearFactorGraph::optimize: error increased, diverges.");
// calculate relative error decrease and update currentError
double relativeDecrease = absoluteDecrease / currentError;
if (verbosity >= 2)
cout << "relativeDecrease: " << relativeDecrease << endl;
bool converged = (relativeDecrease < relativeErrorTreshold)
|| (absoluteDecrease < absoluteErrorTreshold);
if (verbosity >= 1 && converged)
cout << "converged" << endl;
return converged;
}
/* ************************************************************************* */
// Constructors
/* ************************************************************************* */
template<class G, class C>
NonlinearOptimizer<G, C>::NonlinearOptimizer(const G& graph,
const Ordering& ordering, shared_config config, double lambda) :
graph_(&graph), ordering_(&ordering), config_(config), error_(graph.error(
*config)), lambda_(lambda) {
}
/* ************************************************************************* */
// linearize and optimize
/* ************************************************************************* */
template<class G, class C>
VectorConfig NonlinearOptimizer<G, C>::linearizeAndOptimizeForDelta() const {
// linearize the non-linear graph around the current config
// which gives a linear optimization problem in the tangent space
GaussianFactorGraph linear = graph_->linearize(*config_);
// solve for the optimal displacement in the tangent space
VectorConfig delta = linear.optimize(*ordering_);
// return
return delta;
}
/* ************************************************************************* */
// One iteration of Gauss Newton
/* ************************************************************************* */
template<class G, class C>
NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::iterate(
verbosityLevel verbosity) const {
// linearize and optimize
VectorConfig delta = linearizeAndOptimizeForDelta();
// maybe show output
if (verbosity >= DELTA)
delta.print("delta");
// take old config and update it
shared_config newConfig(new C(config_->exmap(delta)));
// maybe show output
if (verbosity >= CONFIG)
newConfig->print("newConfig");
return NonlinearOptimizer(*graph_, *ordering_, newConfig);
}
/* ************************************************************************* */
template<class G, class C>
NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::gaussNewton(
double relativeThreshold, double absoluteThreshold,
verbosityLevel verbosity, int maxIterations) const {
// linearize, solve, update
NonlinearOptimizer next = iterate(verbosity);
// check convergence
bool converged = gtsam::check_convergence(relativeThreshold,
absoluteThreshold, error_, next.error_, verbosity);
// return converged state or iterate
if (converged)
return next;
else
return next.gaussNewton(relativeThreshold, absoluteThreshold, verbosity);
}
/* ************************************************************************* */
// Recursively try to do tempered Gauss-Newton steps until we succeed.
// Form damped system with given lambda, and return a new, more optimistic
// optimizer if error decreased or recurse with a larger lambda if not.
// TODO: in theory we can't infinitely recurse, but maybe we should put a max.
/* ************************************************************************* */
template<class G, class C>
NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::try_lambda(
const GaussianFactorGraph& linear, verbosityLevel verbosity, double factor) const {
if (verbosity >= TRYLAMBDA)
cout << "trying lambda = " << lambda_ << endl;
// add prior-factors
GaussianFactorGraph damped = linear.add_priors(1.0/sqrt(lambda_));
if (verbosity >= DAMPED)
damped.print("damped");
// solve
VectorConfig delta = damped.optimize(*ordering_);
if (verbosity >= TRYDELTA)
delta.print("delta");
// update config
shared_config newConfig(new C(config_->exmap(delta))); // TODO: updateConfig
if (verbosity >= TRYCONFIG)
newConfig->print("config");
// create new optimization state with more adventurous lambda
NonlinearOptimizer next(*graph_, *ordering_, newConfig, lambda_ / factor);
// if error decreased, return the new state
if (next.error_ <= error_)
return next;
else {
// TODO: can we avoid copying the config ?
NonlinearOptimizer cautious(*graph_, *ordering_, config_, lambda_ * factor);
return cautious.try_lambda(linear, verbosity, factor);
}
}
/* ************************************************************************* */
// One iteration of Levenberg Marquardt
/* ************************************************************************* */
template<class G, class C>
NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::iterateLM(
verbosityLevel verbosity, double lambdaFactor) const {
// maybe show output
if (verbosity >= CONFIG)
config_->print("config");
if (verbosity >= ERROR)
cout << "error: " << error_ << endl;
if (verbosity >= LAMBDA)
cout << "lambda = " << lambda_ << endl;
// linearize all factors once
GaussianFactorGraph linear = graph_->linearize(*config_);
if (verbosity >= LINEAR)
linear.print("linear");
// try lambda steps with successively larger lambda until we achieve descent
return try_lambda(linear, verbosity, lambdaFactor);
}
/* ************************************************************************* */
template<class G, class C>
NonlinearOptimizer<G, C> NonlinearOptimizer<G, C>::levenbergMarquardt(
double relativeThreshold, double absoluteThreshold,
verbosityLevel verbosity, int maxIterations, double lambdaFactor) const {
// do one iteration of LM
NonlinearOptimizer next = iterateLM(verbosity, lambdaFactor);
// check convergence
// TODO: move convergence checks here and incorporate in verbosity levels
// TODO: build into iterations somehow as an instance variable
bool converged = gtsam::check_convergence(relativeThreshold,
absoluteThreshold, error_, next.error_, verbosity);
// return converged state or iterate
if (converged || maxIterations <= 1) {
// maybe show output
if (verbosity >= CONFIG)
next.config_->print("final config");
if (verbosity >= ERROR)
cout << "final error: " << next.error_ << endl;
if (verbosity >= LAMBDA)
cout << "final lambda = " << next.lambda_ << endl;
return next;
} else
return next.levenbergMarquardt(relativeThreshold, absoluteThreshold,
verbosity, lambdaFactor);
}
/* ************************************************************************* */
}