487 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file    ISAM2-inl.h
 | |
|  * @brief   Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
 | |
|  * @author  Michael Kaess
 | |
|  */
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <set>
 | |
| 
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
 | |
| #include <gtsam/linear/GaussianFactor.h>
 | |
| #include <gtsam/linear/VectorConfig.h>
 | |
| 
 | |
| #include <gtsam/inference/Conditional.h>
 | |
| #include <gtsam/inference/BayesTree-inl.h>
 | |
| #include <gtsam/inference/ISAM2.h>
 | |
| 
 | |
| 
 | |
| #if 1 // timing
 | |
| #include <sys/time.h>
 | |
| // simple class for accumulating execution timing information by name
 | |
| class Timing {
 | |
| 	class Stats {
 | |
| 	public:
 | |
| 		double t0;
 | |
| 		double t;
 | |
| 		double t_max;
 | |
| 		double t_min;
 | |
| 		int n;
 | |
| 	};
 | |
| 	map<string, Stats> stats;
 | |
| public:
 | |
| 	void add_t0(string id, double t0) {
 | |
| 		stats[id].t0 = t0;
 | |
| 	}
 | |
| 	double get_t0(string id) {
 | |
| 		return stats[id].t0;
 | |
| 	}
 | |
| 	void add_dt(string id, double dt) {
 | |
| 		Stats& s = stats[id];
 | |
| 		s.t += dt;
 | |
| 		s.n++;
 | |
| 		if (s.n==1 || s.t_max < dt) s.t_max = dt;
 | |
| 		if (s.n==1 || s.t_min > dt) s.t_min = dt;
 | |
| 	}
 | |
| 	void print() {
 | |
| 		map<string, Stats>::iterator it;
 | |
| 		for(it = stats.begin(); it!=stats.end(); it++) {
 | |
| 			Stats& s = it->second;
 | |
| 			printf("%s: %g (%i times, min: %g, max: %g)\n",
 | |
| 					it->first.c_str(), s.t, s.n, s.t_min, s.t_max);
 | |
| 		}
 | |
| 	}
 | |
| 	double time(string id) {
 | |
| 		Stats& s = stats[id];
 | |
| 		return s.t;
 | |
| 	}
 | |
| };
 | |
| Timing timing;
 | |
| double tic() {
 | |
| 	struct timeval t;
 | |
| 	gettimeofday(&t, NULL);
 | |
| 	return ((double)t.tv_sec + ((double)t.tv_usec)/1000000.);
 | |
| }
 | |
| double toc(double t) {
 | |
| 	double s = tic();
 | |
| 	return (max(0., s-t));
 | |
| }
 | |
| double tic(string id) {
 | |
| 	double t0 = tic();
 | |
| 	timing.add_t0(id, t0);
 | |
| 	return t0;
 | |
| }
 | |
| double toc(string id) {
 | |
| 	double dt = toc(timing.get_t0(id));
 | |
| 	timing.add_dt(id, dt);
 | |
| 	return dt;
 | |
| }
 | |
| void tictoc_print() {
 | |
| 	timing.print();
 | |
| }
 | |
| #else
 | |
| 	void tictoc_print() {}
 | |
| double tic(string id) {return 0.;}
 | |
| double toc(string id) {return 0.;}
 | |
| #endif
 | |
| 
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   using namespace std;
 | |
| 
 | |
| 	// from inference-inl.h - need to additionally return the newly created factor for caching
 | |
| 	boost::shared_ptr<GaussianConditional> _eliminateOne(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Symbol& key) {
 | |
| 
 | |
| 		// combine the factors of all nodes connected to the variable to be eliminated
 | |
| 		// if no factors are connected to key, returns an empty factor
 | |
| 		tic("eliminate_removeandcombinefactors");
 | |
| 		boost::shared_ptr<GaussianFactor> joint_factor = removeAndCombineFactors(graph,key);
 | |
| 		toc("eliminate_removeandcombinefactors");
 | |
| 
 | |
| 		// eliminate that joint factor
 | |
| 		boost::shared_ptr<GaussianFactor> factor;
 | |
| 		boost::shared_ptr<GaussianConditional> conditional;
 | |
| 		tic("eliminate_eliminate");
 | |
| 		boost::tie(conditional, factor) = joint_factor->eliminate(key);
 | |
| 		toc("eliminate_eliminate");
 | |
| 
 | |
| 		// ADDED: remember the intermediate result to be able to later restart computation in the middle
 | |
| 		cached[key] = factor;
 | |
| 
 | |
| 		// add new factor on separator back into the graph
 | |
| 		if (!factor->empty()) graph.push_back(factor);
 | |
| 
 | |
| 		// return the conditional Gaussian
 | |
| 		return conditional;
 | |
| 	}
 | |
| 
 | |
| 	// from GaussianFactorGraph.cpp, see _eliminateOne above
 | |
| 	GaussianBayesNet _eliminate(FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
 | |
| 		GaussianBayesNet chordalBayesNet; // empty
 | |
| 		BOOST_FOREACH(const Symbol& key, ordering) {
 | |
| 			GaussianConditional::shared_ptr cg = _eliminateOne(graph, cached, key);
 | |
| 			chordalBayesNet.push_back(cg);
 | |
| 		}
 | |
| 		return chordalBayesNet;
 | |
| 	}
 | |
| 
 | |
| 	// special const version used in constructor below
 | |
| 	GaussianBayesNet _eliminate_const(const FactorGraph<GaussianFactor>& graph, CachedFactors& cached, const Ordering& ordering) {
 | |
| 		// make a copy that can be modified locally
 | |
| 		FactorGraph<GaussianFactor> graph_ignored = graph;
 | |
| 		return _eliminate(graph_ignored, cached, ordering);
 | |
| 	}
 | |
| 
 | |
| 	/** Create an empty Bayes Tree */
 | |
| 	template<class Conditional, class Config>
 | |
| 	ISAM2<Conditional, Config>::ISAM2() : BayesTree<Conditional>() {}
 | |
| 
 | |
| 	/** Create a Bayes Tree from a nonlinear factor graph */
 | |
| 	template<class Conditional, class Config>
 | |
| 	ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
 | |
| 	: BayesTree<Conditional>(nlfg.linearize(config)->eliminate(ordering)),
 | |
| 	  theta_(config), delta_(VectorConfig()), nonlinearFactors_(nlfg) {
 | |
| 		// todo: repeats calculation above, just to set "cached"
 | |
| 		// De-referencing shared pointer can be quite expensive because creates temporary
 | |
| 		_eliminate_const(*nlfg.linearize(config), cached_, ordering);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class Conditional, class Config>
 | |
| 	list<size_t> ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
 | |
| 	  FactorGraph<NonlinearFactor<Config> > allAffected;
 | |
| 		list<size_t> indices;
 | |
| 		BOOST_FOREACH(const Symbol& key, keys) {
 | |
| 			const list<size_t> l = nonlinearFactors_.factors(key);
 | |
| 			indices.insert(indices.begin(), l.begin(), l.end());
 | |
| 		}
 | |
| 		indices.sort();
 | |
| 		indices.unique();
 | |
| 		return indices;
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// retrieve all factors that ONLY contain the affected variables
 | |
| 	// (note that the remaining stuff is summarized in the cached factors)
 | |
| 	template<class Conditional, class Config>
 | |
| 	boost::shared_ptr<GaussianFactorGraph> ISAM2<Conditional, Config>::relinearizeAffectedFactors
 | |
| 	(const set<Symbol>& affectedKeys) const {
 | |
| 
 | |
| 		list<Symbol> affectedKeysList; // todo: shouldn't have to convert back to list...
 | |
| 		affectedKeysList.insert(affectedKeysList.begin(), affectedKeys.begin(), affectedKeys.end());
 | |
| 		list<size_t> candidates = getAffectedFactors(affectedKeysList);
 | |
| 
 | |
| 		NonlinearFactorGraph<Config> nonlinearAffectedFactors;
 | |
| 
 | |
| 		BOOST_FOREACH(size_t idx, candidates) {
 | |
| 			bool inside = true;
 | |
| 			BOOST_FOREACH(const Symbol& key, nonlinearFactors_[idx]->keys()) {
 | |
| 				if (affectedKeys.find(key) == affectedKeys.end()) {
 | |
| 					inside = false;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			if (inside)
 | |
| 				nonlinearAffectedFactors.push_back(nonlinearFactors_[idx]);
 | |
| 		}
 | |
| 
 | |
| 		// TODO: temporary might be expensive, return shared pointer ?
 | |
| 		return nonlinearAffectedFactors.linearize(theta_);
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// find intermediate (linearized) factors from cache that are passed into the affected area
 | |
| 	template<class Conditional, class Config>
 | |
| 	FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::getCachedBoundaryFactors(Cliques& orphans) {
 | |
| 		FactorGraph<GaussianFactor> cachedBoundary;
 | |
| 
 | |
| 		BOOST_FOREACH(sharedClique orphan, orphans) {
 | |
| 			// find the last variable that was eliminated
 | |
| 			const Symbol& key = orphan->ordering().back();
 | |
| 			// retrieve the cached factor and add to boundary
 | |
| 			cachedBoundary.push_back(cached_[key]);
 | |
| 		}
 | |
| 
 | |
| 		return cachedBoundary;
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class Conditional, class Config>
 | |
| 	void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
 | |
| 
 | |
| 		// Input: BayesTree(this), newFactors
 | |
| 
 | |
| //#define PRINT_STATS // figures for paper, disable for timing
 | |
| #ifdef PRINT_STATS
 | |
| 		static int counter = 0;
 | |
| 		int maxClique = 0;
 | |
| 		double avgClique = 0;
 | |
| 		int numCliques = 0;
 | |
| 		int nnzR = 0;
 | |
| 		if (counter>0) { // cannot call on empty tree
 | |
| 			GaussianISAM2_P::CliqueData cdata =  this->getCliqueData();
 | |
| 			GaussianISAM2_P::CliqueStats cstats = cdata.getStats();
 | |
| 			maxClique = cstats.maxConditionalSize;
 | |
| 			avgClique = cstats.avgConditionalSize;
 | |
| 			numCliques = cdata.conditionalSizes.size();
 | |
| 			nnzR = calculate_nnz(this->root());
 | |
| 		}
 | |
| 		counter++;
 | |
| #endif
 | |
| 
 | |
| 		// 1. Remove top of Bayes tree and convert to a factor graph:
 | |
| 		// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
 | |
| 		// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
 | |
| 		const list<Symbol> newKeys = newFactors.keys();
 | |
| 		Cliques orphans;
 | |
| 		BayesNet<GaussianConditional> affectedBayesNet;
 | |
| 		this->removeTop(newKeys, affectedBayesNet, orphans);
 | |
| 
 | |
| 		//		FactorGraph<GaussianFactor> factors(affectedBayesNet);
 | |
| 		// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
 | |
| 		// [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries,
 | |
| 		//  so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't
 | |
| 		//  contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose
 | |
| 		//  not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected
 | |
| 		//  in the cached_ values which again will be wrong]
 | |
| 		// so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary
 | |
| 
 | |
| 		// BEGIN OF COPIED CODE
 | |
| 
 | |
| 		tic("linear_lookup1");
 | |
| 		// ordering provides all keys in conditionals, there cannot be others because path to root included
 | |
| 		set<Symbol> affectedKeys;
 | |
| 		list<Symbol> tmp = affectedBayesNet.ordering();
 | |
| 		affectedKeys.insert(tmp.begin(), tmp.end());
 | |
| 
 | |
| 		// Save number of affected variables
 | |
| 		lastAffectedVariableCount = affectedKeys.size();
 | |
| 
 | |
| 		FactorGraph<GaussianFactor> factors(*relinearizeAffectedFactors(affectedKeys));  // todo: no need to relinearize here, should have cached linearized factors
 | |
| 
 | |
| 		// Save number of affected factors
 | |
| 		lastAffectedFactorCount = factors.size();
 | |
| 		// output for generating figures
 | |
| #ifdef PRINT_STATS
 | |
| 		cout << "linear: #newKeys: " << newKeys.size() << " #affectedVariables: " << affectedKeys.size()
 | |
| 		  << " #affectedFactors: " << factors.size() << " maxCliqueSize: " << maxClique
 | |
| 		  << " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
 | |
| #endif
 | |
| 
 | |
| 		toc("linear_lookup1");
 | |
| 
 | |
| 		// add the cached intermediate results from the boundary of the orphans ...
 | |
| 		FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
 | |
| 		factors.push_back(cachedBoundary);
 | |
| 
 | |
| 		// END OF COPIED CODE
 | |
| 
 | |
| 
 | |
| 		// 2. Add the new factors \Factors' into the resulting factor graph
 | |
| 		factors.push_back(newFactors);
 | |
| 
 | |
| 		// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
 | |
| 
 | |
| 		// create an ordering for the new and contaminated factors
 | |
| 		// newKeys are passed in: those variables will be forced to the end in the ordering
 | |
| 		set<Symbol> newKeysSet;
 | |
| 		newKeysSet.insert(newKeys.begin(), newKeys.end());
 | |
| 		Ordering ordering = factors.getConstrainedOrdering(newKeysSet); // intelligent ordering
 | |
| //		Ordering ordering = factors.getOrdering(); // original ordering, yields in bad performance
 | |
| 
 | |
| 		// eliminate into a Bayes net
 | |
| 		tic("linear_eliminate");
 | |
| 		BayesNet<Conditional> bayesNet = _eliminate(factors, cached_, ordering);
 | |
| 		toc("linear_eliminate");
 | |
| 
 | |
| 		// Create Index from ordering
 | |
| 		IndexTable<Symbol> index(ordering);
 | |
| 
 | |
| 		// insert conditionals back in, straight into the topless bayesTree
 | |
| 		typename BayesNet<Conditional>::const_reverse_iterator rit;
 | |
| 		for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
 | |
| 			this->insert(*rit, index);
 | |
| 
 | |
| 		// Save number of affectedCliques
 | |
| 		lastAffectedCliqueCount = this->size();
 | |
| 
 | |
| 		// 4. Insert the orphans back into the new Bayes tree.
 | |
| 
 | |
| 		// add orphans to the bottom of the new tree
 | |
| 		BOOST_FOREACH(sharedClique orphan, orphans) {
 | |
| 			Symbol parentRepresentative = findParentClique(orphan->separator_, index);
 | |
| 			sharedClique parent = (*this)[parentRepresentative];
 | |
| 			parent->children_ += orphan;
 | |
| 			orphan->parent_ = parent; // set new parent!
 | |
| 		}
 | |
| 
 | |
| 		// Output: BayesTree(this)
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	// find all variables that are directly connected by a measurement to one of the marked variables
 | |
| 	template<class Conditional, class Config>
 | |
| 	void ISAM2<Conditional, Config>::find_all(sharedClique clique, list<Symbol>& keys, const list<Symbol>& marked) {
 | |
| 		// does the separator contain any of the variables?
 | |
| 		bool found = false;
 | |
| 		BOOST_FOREACH(const Symbol& key, clique->separator_) {
 | |
| 			if (find(marked.begin(), marked.end(), key) != marked.end())
 | |
| 				found = true;
 | |
| 		}
 | |
| 		if (found) {
 | |
| 			// then add this clique
 | |
| 			keys.push_back(clique->keys().front());
 | |
| 		}
 | |
| 		BOOST_FOREACH(const sharedClique& child, clique->children_) {
 | |
| 			find_all(child, keys, marked);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class Conditional, class Config>
 | |
| 	void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
 | |
| 
 | |
| 		// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
 | |
| 
 | |
| 		// 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
 | |
| 	  list<Symbol> marked;
 | |
| 		VectorConfig deltaMarked;
 | |
| 		for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
 | |
| 			Symbol key = it->first;
 | |
| 			Vector v = it->second;
 | |
| 			if (max(abs(v)) >= relinearize_threshold) {
 | |
| 				marked.push_back(key);
 | |
| 				deltaMarked.insert(key, v);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (marked.size()>0) {
 | |
| 
 | |
| 			// 2. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
 | |
| 			theta_ = theta_.expmap(deltaMarked);
 | |
| 
 | |
| 			// 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
 | |
| 
 | |
| 			// mark all cliques that involve marked variables
 | |
| 			list<Symbol> affectedSymbols(marked); // add all marked
 | |
| 			tic("nonlin-find_all");
 | |
| 			find_all(this->root(), affectedSymbols, marked); // add other cliques that have the marked ones in the separator
 | |
| 			affectedSymbols.sort(); // remove duplicates
 | |
| 			affectedSymbols.unique();
 | |
| 			toc("nonlin-find_all");
 | |
| 
 | |
| 			// 4. From the leaves to the top, if a clique is marked:
 | |
| 			//    re-linearize the original factors in \Factors associated with the clique,
 | |
| 			//    add the cached marginal factors from its children, and re-eliminate.
 | |
| 
 | |
| 			// todo: for simplicity, currently simply remove the top and recreate it using the original ordering
 | |
| 
 | |
| 			tic("nonlin-mess");
 | |
| 			Cliques orphans;
 | |
| 			BayesNet<GaussianConditional> affectedBayesNet;
 | |
| 			this->removeTop(affectedSymbols, affectedBayesNet, orphans);
 | |
| 			// remember original ordering
 | |
| // todo			Ordering original_ordering = affectedBayesNet.ordering(); // does not yield original ordering...
 | |
| 			FactorGraph<GaussianFactor> tmp_factors(affectedBayesNet); // so instead we recalculate an acceptable ordering here
 | |
| 			Ordering original_ordering = tmp_factors.getOrdering(); // todo - remove multiple lines up to here
 | |
| 
 | |
| 			boost::shared_ptr<GaussianFactorGraph> factors;
 | |
| 
 | |
| 			// ordering provides all keys in conditionals, there cannot be others because path to root included
 | |
| 			set<Symbol> affectedKeys;
 | |
| 			list<Symbol> tmp = affectedBayesNet.ordering();
 | |
| 			affectedKeys.insert(tmp.begin(), tmp.end());
 | |
| 			toc("nonlin-mess");
 | |
| 
 | |
| 			tic("nonlin_relin");
 | |
| 			factors = relinearizeAffectedFactors(affectedKeys);
 | |
| 			toc("nonlin_relin");
 | |
| 
 | |
| 			cout << "nonlinear: #marked: " << marked.size() << " #affected: " << affectedKeys.size() << " #factors: " << factors->size() << endl;
 | |
| 
 | |
| 			// add the cached intermediate results from the boundary of the orphans ...
 | |
| 			FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
 | |
| 			factors->push_back(cachedBoundary);
 | |
| 
 | |
| 			// eliminate into a Bayes net
 | |
| 			tic("nonlin_eliminate");
 | |
| 			BayesNet<Conditional> bayesNet = _eliminate(*factors, cached_, original_ordering);
 | |
| 			toc("nonlin_eliminate");
 | |
| 
 | |
| 			// Create Index from ordering
 | |
| 			IndexTable<Symbol> index(original_ordering);
 | |
| 
 | |
| 			// insert conditionals back in, straight into the topless bayesTree
 | |
| 			typename BayesNet<Conditional>::const_reverse_iterator rit;
 | |
| 			for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
 | |
| 				this->insert(*rit, index);
 | |
| 
 | |
| 			// add orphans to the bottom of the new tree
 | |
| 			BOOST_FOREACH(sharedClique orphan, orphans) {
 | |
| 				Symbol parentRepresentative = findParentClique(orphan->separator_, index);
 | |
| 				sharedClique parent = (*this)[parentRepresentative];
 | |
| 				parent->children_ += orphan;
 | |
| 				orphan->parent_ = parent; // set new parent!
 | |
| 			}
 | |
| 
 | |
| 			// Output: updated Bayes tree (this), updated linearization point theta_
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* ************************************************************************* */
 | |
| 	template<class Conditional, class Config>
 | |
| 	void ISAM2<Conditional, Config>::update(
 | |
| 			const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
 | |
| 			double wildfire_threshold, double relinearize_threshold, bool relinearize) {
 | |
| 
 | |
| 		tic("all");
 | |
| 
 | |
| 		tic("step1");
 | |
| 		// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
 | |
| 		nonlinearFactors_.push_back(newFactors);
 | |
| 		toc("step1");
 | |
| 
 | |
| 		tic("step2");
 | |
| 		// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
 | |
| 		theta_.insert(newTheta);
 | |
| 		toc("step2");
 | |
| 
 | |
| 		tic("step3");
 | |
| 		// 3. Linearize new factor
 | |
| 		boost::shared_ptr<GaussianFactorGraph> linearFactors = newFactors.linearize(theta_);
 | |
| 		toc("step3");
 | |
| 
 | |
| 		tic("step4");
 | |
| 		// 4. Linear iSAM step (alg 3)
 | |
| 		linear_update(*linearFactors); // in: this
 | |
| 		toc("step4");
 | |
| 
 | |
| 		tic("step5");
 | |
| 		// 5. Calculate Delta (alg 0)
 | |
| 		delta_ = optimize2(*this, wildfire_threshold);
 | |
| 		toc("step5");
 | |
| 
 | |
| 		tic("step6");
 | |
| 		// 6. Iterate Algorithm 4 until no more re-linearizations occur
 | |
| 		if (relinearize) {
 | |
| 			fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
 | |
| 		}
 | |
| 		toc("step6");
 | |
| 
 | |
| 		// todo: not part of algorithm in paper: linearization point and delta_ do not fit... have to update delta again
 | |
| //todo		delta_ = optimize2(*this, wildfire_threshold);
 | |
| 
 | |
| 		toc("all");
 | |
| 
 | |
| 		tictoc_print();
 | |
| 	}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| }
 | |
| /// namespace gtsam
 |