gtsam/gtsam/nonlinear/ISAM2.cpp

1161 lines
48 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ISAM2-inl.h
* @brief Incremental update functionality (ISAM2) for BayesTree, with fluid relinearization.
* @author Michael Kaess, Richard Roberts
*/
#if 0
#include <boost/foreach.hpp>
#include <boost/assign/std/list.hpp> // for operator +=
using namespace boost::assign;
#include <boost/range/adaptors.hpp>
#include <boost/range/algorithm.hpp>
#include <boost/algorithm/string.hpp>
#include <gtsam/base/timing.h>
#include <gtsam/base/debug.h>
#include <gtsam/inference/BayesTree.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/linear/HessianFactor.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/ISAM2.h>
#include <gtsam/nonlinear/DoglegOptimizerImpl.h>
#include <gtsam/nonlinear/nonlinearExceptions.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
namespace gtsam {
using namespace std;
static const bool disableReordering = false;
static const double batchThreshold = 0.65;
/* ************************************************************************* */
std::string ISAM2DoglegParams::adaptationModeTranslator(const DoglegOptimizerImpl::TrustRegionAdaptationMode& adaptationMode) const {
std::string s;
switch (adaptationMode) {
case DoglegOptimizerImpl::SEARCH_EACH_ITERATION: s = "SEARCH_EACH_ITERATION"; break;
case DoglegOptimizerImpl::ONE_STEP_PER_ITERATION: s = "ONE_STEP_PER_ITERATION"; break;
default: s = "UNDEFINED"; break;
}
return s;
}
/* ************************************************************************* */
DoglegOptimizerImpl::TrustRegionAdaptationMode ISAM2DoglegParams::adaptationModeTranslator(const std::string& adaptationMode) const {
std::string s = adaptationMode; boost::algorithm::to_upper(s);
if (s == "SEARCH_EACH_ITERATION") return DoglegOptimizerImpl::SEARCH_EACH_ITERATION;
if (s == "ONE_STEP_PER_ITERATION") return DoglegOptimizerImpl::ONE_STEP_PER_ITERATION;
/* default is SEARCH_EACH_ITERATION */
return DoglegOptimizerImpl::SEARCH_EACH_ITERATION;
}
/* ************************************************************************* */
ISAM2Params::Factorization ISAM2Params::factorizationTranslator(const std::string& str) const {
std::string s = str; boost::algorithm::to_upper(s);
if (s == "QR") return ISAM2Params::QR;
if (s == "CHOLESKY") return ISAM2Params::CHOLESKY;
/* default is CHOLESKY */
return ISAM2Params::CHOLESKY;
}
/* ************************************************************************* */
std::string ISAM2Params::factorizationTranslator(const ISAM2Params::Factorization& value) const {
std::string s;
switch (value) {
case ISAM2Params::QR: s = "QR"; break;
case ISAM2Params::CHOLESKY: s = "CHOLESKY"; break;
default: s = "UNDEFINED"; break;
}
return s;
}
/* ************************************************************************* */
ISAM2::ISAM2(const ISAM2Params& params):
deltaDoglegUptodate_(true), deltaUptodate_(true), params_(params) {
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
}
/* ************************************************************************* */
ISAM2::ISAM2():
deltaDoglegUptodate_(true), deltaUptodate_(true) {
if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams))
doglegDelta_ = boost::get<ISAM2DoglegParams>(params_.optimizationParams).initialDelta;
}
/* ************************************************************************* */
ISAM2::ISAM2(const ISAM2& other) {
*this = other;
}
/* ************************************************************************* */
ISAM2& ISAM2::operator=(const ISAM2& rhs) {
// Copy BayesTree
this->Base::operator=(rhs);
// Copy our variables
// When we have Permuted<...>, it is only necessary to copy this permuted
// view and not the original, because copying the permuted view automatically
// copies the original.
theta_ = rhs.theta_;
variableIndex_ = rhs.variableIndex_;
delta_ = rhs.delta_;
deltaNewton_ = rhs.deltaNewton_;
RgProd_ = rhs.RgProd_;
deltaDoglegUptodate_ = rhs.deltaDoglegUptodate_;
deltaUptodate_ = rhs.deltaUptodate_;
deltaReplacedMask_ = rhs.deltaReplacedMask_;
nonlinearFactors_ = rhs.nonlinearFactors_;
linearFactors_ = GaussianFactorGraph();
linearFactors_.reserve(rhs.linearFactors_.size());
BOOST_FOREACH(const GaussianFactor::shared_ptr& linearFactor, rhs.linearFactors_) {
linearFactors_.push_back(linearFactor ? linearFactor->clone() : GaussianFactor::shared_ptr()); }
ordering_ = rhs.ordering_;
params_ = rhs.params_;
doglegDelta_ = rhs.doglegDelta_;
lastAffectedVariableCount = rhs.lastAffectedVariableCount;
lastAffectedFactorCount = rhs.lastAffectedFactorCount;
lastAffectedCliqueCount = rhs.lastAffectedCliqueCount;
lastAffectedMarkedCount = rhs.lastAffectedMarkedCount;
lastBacksubVariableCount = rhs.lastBacksubVariableCount;
lastNnzTop = rhs.lastNnzTop;
return *this;
}
/* ************************************************************************* */
FastList<size_t> ISAM2::getAffectedFactors(const FastList<Index>& keys) const {
static const bool debug = false;
if(debug) cout << "Getting affected factors for ";
if(debug) { BOOST_FOREACH(const Index key, keys) { cout << key << " "; } }
if(debug) cout << endl;
FactorGraph<NonlinearFactor > allAffected;
FastList<size_t> indices;
BOOST_FOREACH(const Index key, keys) {
// const list<size_t> l = nonlinearFactors_.factors(key);
// indices.insert(indices.begin(), l.begin(), l.end());
const VariableIndex::Factors& factors(variableIndex_[key]);
BOOST_FOREACH(size_t factor, factors) {
if(debug) cout << "Variable " << key << " affects factor " << factor << endl;
indices.push_back(factor);
}
}
indices.sort();
indices.unique();
if(debug) cout << "Affected factors are: ";
if(debug) { BOOST_FOREACH(const size_t index, indices) { cout << index << " "; } }
if(debug) cout << endl;
return indices;
}
/* ************************************************************************* */
// retrieve all factors that ONLY contain the affected variables
// (note that the remaining stuff is summarized in the cached factors)
FactorGraph<GaussianFactor>::shared_ptr
ISAM2::relinearizeAffectedFactors(const FastList<Index>& affectedKeys, const FastSet<Index>& relinKeys) const {
gttic(getAffectedFactors);
FastList<size_t> candidates = getAffectedFactors(affectedKeys);
gttoc(getAffectedFactors);
NonlinearFactorGraph nonlinearAffectedFactors;
gttic(affectedKeysSet);
// for fast lookup below
FastSet<Index> affectedKeysSet;
affectedKeysSet.insert(affectedKeys.begin(), affectedKeys.end());
gttoc(affectedKeysSet);
gttic(check_candidates_and_linearize);
FactorGraph<GaussianFactor>::shared_ptr linearized = boost::make_shared<FactorGraph<GaussianFactor> >();
BOOST_FOREACH(size_t idx, candidates) {
bool inside = true;
bool useCachedLinear = params_.cacheLinearizedFactors;
BOOST_FOREACH(Key key, nonlinearFactors_[idx]->keys()) {
Index var = ordering_[key];
if(affectedKeysSet.find(var) == affectedKeysSet.end()) {
inside = false;
break;
}
if(useCachedLinear && relinKeys.find(var) != relinKeys.end())
useCachedLinear = false;
}
if(inside) {
if(useCachedLinear) {
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
assert(linearFactors_[idx]);
assert(linearFactors_[idx]->keys() == nonlinearFactors_[idx]->symbolic(ordering_)->keys());
#endif
linearized->push_back(linearFactors_[idx]);
} else {
GaussianFactor::shared_ptr linearFactor = nonlinearFactors_[idx]->linearize(theta_, ordering_);
linearized->push_back(linearFactor);
if(params_.cacheLinearizedFactors) {
#ifdef GTSAM_EXTRA_CONSISTENCY_CHECKS
assert(linearFactors_[idx]->keys() == linearFactor->keys());
#endif
linearFactors_[idx] = linearFactor;
}
}
}
}
gttoc(check_candidates_and_linearize);
return linearized;
}
/* ************************************************************************* */
// find intermediate (linearized) factors from cache that are passed into the affected area
GaussianFactorGraph ISAM2::getCachedBoundaryFactors(Cliques& orphans) {
static const bool debug = false;
GaussianFactorGraph cachedBoundary;
BOOST_FOREACH(sharedClique orphan, orphans) {
// find the last variable that was eliminated
Index key = (*orphan)->frontals().back();
// retrieve the cached factor and add to boundary
cachedBoundary.push_back(orphan->cachedFactor());
if(debug) { cout << "Cached factor for variable " << key; orphan->cachedFactor()->print(""); }
}
return cachedBoundary;
}
boost::shared_ptr<FastSet<Index> > ISAM2::recalculate(const FastSet<Index>& markedKeys,
const FastSet<Index>& relinKeys, const FastVector<Index>& observedKeys, const FastSet<Index>& unusedIndices,
const boost::optional<FastMap<Index,int> >& constrainKeys, ISAM2Result& result) {
// TODO: new factors are linearized twice, the newFactors passed in are not used.
const bool debug = ISDEBUG("ISAM2 recalculate");
// Input: BayesTree(this), newFactors
//#define PRINT_STATS // figures for paper, disable for timing
#ifdef PRINT_STATS
static int counter = 0;
int maxClique = 0;
double avgClique = 0;
int numCliques = 0;
int nnzR = 0;
if (counter>0) { // cannot call on empty tree
GaussianISAM2_P::CliqueData cdata = this->getCliqueData();
GaussianISAM2_P::CliqueStats cstats = cdata.getStats();
maxClique = cstats.maxCONDITIONALSize;
avgClique = cstats.avgCONDITIONALSize;
numCliques = cdata.conditionalSizes.size();
nnzR = calculate_nnz(this->root());
}
counter++;
#endif
if(debug) {
cout << "markedKeys: ";
BOOST_FOREACH(const Index key, markedKeys) { cout << key << " "; }
cout << endl;
cout << "observedKeys: ";
BOOST_FOREACH(const Index key, observedKeys) { cout << key << " "; }
cout << endl;
}
// 1. Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
gttic(removetop);
Cliques orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(markedKeys, affectedBayesNet, orphans);
gttoc(removetop);
if(debug) affectedBayesNet.print("Removed top: ");
if(debug) orphans.print("Orphans: ");
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the cached factors get messed up
// [all the necessary data is actually contained in the affectedBayesNet, including what was passed in from the boundaries,
// so this would be correct; however, in the process we also generate new cached_ entries that will be wrong (ie. they don't
// contain what would be passed up at a certain point if batch elimination was done, but that's what we need); we could choose
// not to update cached_ from here, but then the new information (and potentially different variable ordering) is not reflected
// in the cached_ values which again will be wrong]
// so instead we have to retrieve the original linearized factors AND add the cached factors from the boundary
// BEGIN OF COPIED CODE
// ordering provides all keys in conditionals, there cannot be others because path to root included
gttic(affectedKeys);
FastList<Index> affectedKeys = affectedBayesNet.ordering();
gttoc(affectedKeys);
boost::shared_ptr<FastSet<Index> > affectedKeysSet(new FastSet<Index>()); // Will return this result
if(affectedKeys.size() >= theta_.size() * batchThreshold) {
gttic(batch);
gttic(add_keys);
BOOST_FOREACH(const Ordering::value_type& key_index, ordering_) { affectedKeysSet->insert(key_index.second); }
gttoc(add_keys);
gttic(reorder);
gttic(CCOLAMD);
// Do a batch step - reorder and relinearize all variables
vector<int> cmember(theta_.size(), 0);
if(constrainKeys) {
if(!constrainKeys->empty()) {
typedef std::pair<const Index,int> Index_Group;
if(theta_.size() > constrainKeys->size()) { // Only if some variables are unconstrained
BOOST_FOREACH(const Index_Group& index_group, *constrainKeys) {
cmember[index_group.first] = index_group.second; }
} else {
int minGroup = *boost::range::min_element(boost::adaptors::values(*constrainKeys));
BOOST_FOREACH(const Index_Group& index_group, *constrainKeys) {
cmember[index_group.first] = index_group.second - minGroup; }
}
}
} else {
if(theta_.size() > observedKeys.size()) { // Only if some variables are unconstrained
BOOST_FOREACH(Index var, observedKeys) { cmember[var] = 1; }
}
}
Permutation::shared_ptr colamd(inference::PermutationCOLAMD_(variableIndex_, cmember));
Permutation::shared_ptr colamdInverse(colamd->inverse());
gttoc(CCOLAMD);
// Reorder
gttic(permute_global_variable_index);
variableIndex_.permuteInPlace(*colamd);
gttoc(permute_global_variable_index);
gttic(permute_delta);
delta_.permuteInPlace(*colamd);
deltaNewton_.permuteInPlace(*colamd);
RgProd_.permuteInPlace(*colamd);
gttoc(permute_delta);
gttic(permute_ordering);
ordering_.permuteInPlace(*colamd);
gttoc(permute_ordering);
gttoc(reorder);
gttic(linearize);
GaussianFactorGraph linearized = *nonlinearFactors_.linearize(theta_, ordering_);
if(params_.cacheLinearizedFactors)
linearFactors_ = linearized;
gttoc(linearize);
gttic(eliminate);
JunctionTree<GaussianFactorGraph, Base::Clique> jt(linearized, variableIndex_);
sharedClique newRoot;
if(params_.factorization == ISAM2Params::CHOLESKY)
newRoot = jt.eliminate(EliminatePreferCholesky);
else if(params_.factorization == ISAM2Params::QR)
newRoot = jt.eliminate(EliminateQR);
else assert(false);
if(debug) newRoot->print("Eliminated: ");
gttoc(eliminate);
gttic(insert);
this->clear();
this->insert(newRoot);
gttoc(insert);
result.variablesReeliminated = affectedKeysSet->size();
result.factorsRecalculated = nonlinearFactors_.size();
lastAffectedMarkedCount = markedKeys.size();
lastAffectedVariableCount = affectedKeysSet->size();
lastAffectedFactorCount = linearized.size();
// Reeliminated keys for detailed results
if(params_.enableDetailedResults) {
BOOST_FOREACH(Key key, theta_.keys()) {
result.detail->variableStatus[key].isReeliminated = true;
}
}
gttoc(batch);
} else {
gttic(incremental);
// 2. Add the new factors \Factors' into the resulting factor graph
FastList<Index> affectedAndNewKeys;
affectedAndNewKeys.insert(affectedAndNewKeys.end(), affectedKeys.begin(), affectedKeys.end());
affectedAndNewKeys.insert(affectedAndNewKeys.end(), observedKeys.begin(), observedKeys.end());
gttic(relinearizeAffected);
GaussianFactorGraph factors(*relinearizeAffectedFactors(affectedAndNewKeys, relinKeys));
if(debug) factors.print("Relinearized factors: ");
gttoc(relinearizeAffected);
if(debug) { cout << "Affected keys: "; BOOST_FOREACH(const Index key, affectedKeys) { cout << key << " "; } cout << endl; }
// Reeliminated keys for detailed results
if(params_.enableDetailedResults) {
BOOST_FOREACH(Index index, affectedAndNewKeys) {
result.detail->variableStatus[ordering_.key(index)].isReeliminated = true;
}
}
result.variablesReeliminated = affectedAndNewKeys.size();
result.factorsRecalculated = factors.size();
lastAffectedMarkedCount = markedKeys.size();
lastAffectedVariableCount = affectedKeys.size();
lastAffectedFactorCount = factors.size();
#ifdef PRINT_STATS
// output for generating figures
cout << "linear: #markedKeys: " << markedKeys.size() << " #affectedVariables: " << affectedKeys.size()
<< " #affectedFactors: " << factors.size() << " maxCliqueSize: " << maxClique
<< " avgCliqueSize: " << avgClique << " #Cliques: " << numCliques << " nnzR: " << nnzR << endl;
#endif
gttic(cached);
// add the cached intermediate results from the boundary of the orphans ...
GaussianFactorGraph cachedBoundary = getCachedBoundaryFactors(orphans);
if(debug) cachedBoundary.print("Boundary factors: ");
factors.push_back(cachedBoundary);
gttoc(cached);
// END OF COPIED CODE
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
gttic(reorder_and_eliminate);
gttic(list_to_set);
// create a partial reordering for the new and contaminated factors
// markedKeys are passed in: those variables will be forced to the end in the ordering
affectedKeysSet->insert(markedKeys.begin(), markedKeys.end());
affectedKeysSet->insert(affectedKeys.begin(), affectedKeys.end());
gttoc(list_to_set);
gttic(PartialSolve);
Impl::ReorderingMode reorderingMode;
reorderingMode.nFullSystemVars = ordering_.size();
reorderingMode.algorithm = Impl::ReorderingMode::COLAMD;
reorderingMode.constrain = Impl::ReorderingMode::CONSTRAIN_LAST;
if(constrainKeys) {
reorderingMode.constrainedKeys = *constrainKeys;
} else {
reorderingMode.constrainedKeys = FastMap<Index,int>();
BOOST_FOREACH(Index var, observedKeys) { reorderingMode.constrainedKeys->insert(make_pair(var, 1)); }
}
FastSet<Index> affectedUsedKeys = *affectedKeysSet; // Remove unused keys from the set we pass to PartialSolve
BOOST_FOREACH(Index unused, unusedIndices) {
affectedUsedKeys.erase(unused);
}
// Remove unaffected keys from the constraints
FastMap<Index,int>::iterator iter = reorderingMode.constrainedKeys->begin();
while(iter != reorderingMode.constrainedKeys->end()) {
if(affectedUsedKeys.find(iter->first) == affectedUsedKeys.end()) {
reorderingMode.constrainedKeys->erase(iter++);
} else {
++iter;
}
}
Impl::PartialSolveResult partialSolveResult =
Impl::PartialSolve(factors, affectedUsedKeys, reorderingMode, (params_.factorization == ISAM2Params::QR));
gttoc(PartialSolve);
// We now need to permute everything according this partial reordering: the
// delta vector, the global ordering, and the factors we're about to
// re-eliminate. The reordered variables are also mentioned in the
// orphans and the leftover cached factors.
gttic(permute_global_variable_index);
variableIndex_.permuteInPlace(partialSolveResult.reorderingSelector, partialSolveResult.reorderingPermutation);
gttoc(permute_global_variable_index);
gttic(permute_delta);
delta_.permuteInPlace(partialSolveResult.reorderingSelector, partialSolveResult.reorderingPermutation);
deltaNewton_.permuteInPlace(partialSolveResult.reorderingSelector, partialSolveResult.reorderingPermutation);
RgProd_.permuteInPlace(partialSolveResult.reorderingSelector, partialSolveResult.reorderingPermutation);
gttoc(permute_delta);
gttic(permute_ordering);
ordering_.permuteInPlace(partialSolveResult.reorderingSelector, partialSolveResult.reorderingPermutation);
gttoc(permute_ordering);
if(params_.cacheLinearizedFactors) {
gttic(permute_cached_linear);
//linearFactors_.permuteWithInverse(partialSolveResult.fullReorderingInverse);
FastList<size_t> permuteLinearIndices = getAffectedFactors(affectedAndNewKeys);
BOOST_FOREACH(size_t idx, permuteLinearIndices) {
linearFactors_[idx]->reduceWithInverse(partialSolveResult.reorderingInverse);
}
gttoc(permute_cached_linear);
}
gttoc(reorder_and_eliminate);
gttic(reassemble);
if(partialSolveResult.bayesTree) {
assert(!this->root_);
this->insert(partialSolveResult.bayesTree);
}
gttoc(reassemble);
// 4. Insert the orphans back into the new Bayes tree.
gttic(orphans);
gttic(permute);
BOOST_FOREACH(sharedClique orphan, orphans) {
(void)orphan->reduceSeparatorWithInverse(partialSolveResult.reorderingInverse);
}
gttoc(permute);
gttic(insert);
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
// Because the affectedKeysSelector is sorted, the orphan separator keys
// will be sorted correctly according to the new elimination order after
// applying the permutation, so findParentClique, which looks for the
// lowest-ordered parent, will still work.
Index parentRepresentative = Base::findParentClique((*orphan)->parents());
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
gttoc(insert);
gttoc(orphans);
gttoc(incremental);
}
// Root clique variables for detailed results
if(params_.enableDetailedResults) {
BOOST_FOREACH(Index index, this->root()->conditional()->frontals()) {
result.detail->variableStatus[ordering_.key(index)].inRootClique = true;
}
}
return affectedKeysSet;
}
/* ************************************************************************* */
ISAM2Result ISAM2::update(
const NonlinearFactorGraph& newFactors, const Values& newTheta, const FastVector<size_t>& removeFactorIndices,
const boost::optional<FastMap<Key,int> >& constrainedKeys, const boost::optional<FastList<Key> >& noRelinKeys,
const boost::optional<FastList<Key> >& extraReelimKeys, bool force_relinearize) {
const bool debug = ISDEBUG("ISAM2 update");
const bool verbose = ISDEBUG("ISAM2 update verbose");
static int count = 0;
count++;
lastAffectedVariableCount = 0;
lastAffectedFactorCount = 0;
lastAffectedCliqueCount = 0;
lastAffectedMarkedCount = 0;
lastBacksubVariableCount = 0;
lastNnzTop = 0;
ISAM2Result result;
if(params_.enableDetailedResults)
result.detail = ISAM2Result::DetailedResults();
const bool relinearizeThisStep = force_relinearize || (params_.enableRelinearization && count % params_.relinearizeSkip == 0);
if(verbose) {
cout << "ISAM2::update\n";
this->print("ISAM2: ");
}
// Update delta if we need it to check relinearization later
if(relinearizeThisStep) {
gttic(updateDelta);
updateDelta(disableReordering);
gttoc(updateDelta);
}
gttic(push_back_factors);
// Add the new factor indices to the result struct
result.newFactorsIndices.resize(newFactors.size());
for(size_t i=0; i<newFactors.size(); ++i)
result.newFactorsIndices[i] = i + nonlinearFactors_.size();
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
if(debug || verbose) newFactors.print("The new factors are: ");
nonlinearFactors_.push_back(newFactors);
// Remove the removed factors
NonlinearFactorGraph removeFactors; removeFactors.reserve(removeFactorIndices.size());
BOOST_FOREACH(size_t index, removeFactorIndices) {
removeFactors.push_back(nonlinearFactors_[index]);
nonlinearFactors_.remove(index);
if(params_.cacheLinearizedFactors)
linearFactors_.remove(index);
}
// Remove removed factors from the variable index so we do not attempt to relinearize them
variableIndex_.remove(removeFactorIndices, *removeFactors.symbolic(ordering_));
// Compute unused keys and indices
FastSet<Key> unusedKeys;
FastSet<Index> unusedIndices;
{
// Get keys from removed factors and new factors, and compute unused keys,
// i.e., keys that are empty now and do not appear in the new factors.
FastSet<Key> removedAndEmpty;
BOOST_FOREACH(Key key, removeFactors.keys()) {
if(variableIndex_[ordering_[key]].empty())
removedAndEmpty.insert(removedAndEmpty.end(), key);
}
FastSet<Key> newFactorSymbKeys = newFactors.keys();
std::set_difference(removedAndEmpty.begin(), removedAndEmpty.end(),
newFactorSymbKeys.begin(), newFactorSymbKeys.end(), std::inserter(unusedKeys, unusedKeys.end()));
// Get indices for unused keys
BOOST_FOREACH(Key key, unusedKeys) {
unusedIndices.insert(unusedIndices.end(), ordering_[key]);
}
}
gttoc(push_back_factors);
gttic(add_new_variables);
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
Impl::AddVariables(newTheta, theta_, delta_, deltaNewton_, RgProd_, deltaReplacedMask_, ordering_);
// New keys for detailed results
if(params_.enableDetailedResults) {
BOOST_FOREACH(Key key, newTheta.keys()) { result.detail->variableStatus[key].isNew = true; } }
gttoc(add_new_variables);
gttic(evaluate_error_before);
if(params_.evaluateNonlinearError)
result.errorBefore.reset(nonlinearFactors_.error(calculateEstimate()));
gttoc(evaluate_error_before);
gttic(gather_involved_keys);
// 3. Mark linear update
FastSet<Index> markedKeys = Impl::IndicesFromFactors(ordering_, newFactors); // Get keys from new factors
// Also mark keys involved in removed factors
{
FastSet<Index> markedRemoveKeys = Impl::IndicesFromFactors(ordering_, removeFactors); // Get keys involved in removed factors
markedKeys.insert(markedRemoveKeys.begin(), markedRemoveKeys.end()); // Add to the overall set of marked keys
}
// Also mark any provided extra re-eliminate keys
if(extraReelimKeys) {
BOOST_FOREACH(Key key, *extraReelimKeys) {
markedKeys.insert(ordering_.at(key));
}
}
// Observed keys for detailed results
if(params_.enableDetailedResults) {
BOOST_FOREACH(Index index, markedKeys) {
result.detail->variableStatus[ordering_.key(index)].isObserved = true;
}
}
// NOTE: we use assign instead of the iterator constructor here because this
// is a vector of size_t, so the constructor unintentionally resolves to
// vector(size_t count, Index value) instead of the iterator constructor.
FastVector<Index> observedKeys; observedKeys.reserve(markedKeys.size());
BOOST_FOREACH(Index index, markedKeys) {
if(unusedIndices.find(index) == unusedIndices.end()) // Only add if not unused
observedKeys.push_back(index); // Make a copy of these, as we'll soon add to them
}
gttoc(gather_involved_keys);
// Check relinearization if we're at the nth step, or we are using a looser loop relin threshold
FastSet<Index> relinKeys;
if (relinearizeThisStep) {
gttic(gather_relinearize_keys);
// 4. Mark keys in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
if(params_.enablePartialRelinearizationCheck)
relinKeys = Impl::CheckRelinearizationPartial(root_, delta_, ordering_, params_.relinearizeThreshold);
else
relinKeys = Impl::CheckRelinearizationFull(delta_, ordering_, params_.relinearizeThreshold);
if(disableReordering) relinKeys = Impl::CheckRelinearizationFull(delta_, ordering_, 0.0); // This is used for debugging
// Remove from relinKeys any keys whose linearization points are fixed
BOOST_FOREACH(Key key, fixedVariables_) {
relinKeys.erase(ordering_[key]);
}
if(noRelinKeys) {
BOOST_FOREACH(Key key, *noRelinKeys) {
relinKeys.erase(ordering_[key]);
}
}
// Above relin threshold keys for detailed results
if(params_.enableDetailedResults) {
BOOST_FOREACH(Index index, relinKeys) {
result.detail->variableStatus[ordering_.key(index)].isAboveRelinThreshold = true;
result.detail->variableStatus[ordering_.key(index)].isRelinearized = true; } }
// Add the variables being relinearized to the marked keys
vector<bool> markedRelinMask(ordering_.size(), false);
BOOST_FOREACH(const Index j, relinKeys) { markedRelinMask[j] = true; }
markedKeys.insert(relinKeys.begin(), relinKeys.end());
gttoc(gather_relinearize_keys);
gttic(fluid_find_all);
// 5. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
if (!relinKeys.empty() && this->root()) {
// add other cliques that have the marked ones in the separator
Impl::FindAll(this->root(), markedKeys, markedRelinMask);
// Relin involved keys for detailed results
if(params_.enableDetailedResults) {
FastSet<Index> involvedRelinKeys;
Impl::FindAll(this->root(), involvedRelinKeys, markedRelinMask);
BOOST_FOREACH(Index index, involvedRelinKeys) {
if(!result.detail->variableStatus[ordering_.key(index)].isAboveRelinThreshold) {
result.detail->variableStatus[ordering_.key(index)].isRelinearizeInvolved = true;
result.detail->variableStatus[ordering_.key(index)].isRelinearized = true; } }
}
}
gttoc(fluid_find_all);
gttic(expmap);
// 6. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
if (!relinKeys.empty())
Impl::ExpmapMasked(theta_, delta_, ordering_, markedRelinMask, delta_);
gttoc(expmap);
result.variablesRelinearized = markedKeys.size();
} else {
result.variablesRelinearized = 0;
}
gttic(linearize_new);
// 7. Linearize new factors
if(params_.cacheLinearizedFactors) {
gttic(linearize);
FactorGraph<GaussianFactor>::shared_ptr linearFactors = newFactors.linearize(theta_, ordering_);
linearFactors_.push_back(*linearFactors);
assert(nonlinearFactors_.size() == linearFactors_.size());
gttoc(linearize);
gttic(augment_VI);
// Augment the variable index with the new factors
variableIndex_.augment(*linearFactors);
gttoc(augment_VI);
} else {
variableIndex_.augment(*newFactors.symbolic(ordering_));
}
gttoc(linearize_new);
gttic(recalculate);
// 8. Redo top of Bayes tree
// Convert constrained symbols to indices
boost::optional<FastMap<Index,int> > constrainedIndices;
if(constrainedKeys) {
constrainedIndices = FastMap<Index,int>();
typedef pair<const Key, int> Key_Group;
BOOST_FOREACH(Key_Group key_group, *constrainedKeys) {
constrainedIndices->insert(make_pair(ordering_[key_group.first], key_group.second));
}
}
boost::shared_ptr<FastSet<Index> > replacedKeys;
if(!markedKeys.empty() || !observedKeys.empty())
replacedKeys = recalculate(markedKeys, relinKeys, observedKeys, unusedIndices, constrainedIndices, result);
// Update replaced keys mask (accumulates until back-substitution takes place)
if(replacedKeys) {
BOOST_FOREACH(const Index var, *replacedKeys) {
deltaReplacedMask_[var] = true; } }
gttoc(recalculate);
// After the top of the tree has been redone and may have index gaps from
// unused keys, condense the indices to remove gaps by rearranging indices
// in all data structures.
if(!unusedKeys.empty()) {
gttic(remove_variables);
Impl::RemoveVariables(unusedKeys, root_, theta_, variableIndex_, delta_, deltaNewton_, RgProd_,
deltaReplacedMask_, ordering_, Base::nodes_, linearFactors_, fixedVariables_);
gttoc(remove_variables);
}
result.cliques = this->nodes().size();
deltaDoglegUptodate_ = false;
deltaUptodate_ = false;
gttic(evaluate_error_after);
if(params_.evaluateNonlinearError)
result.errorAfter.reset(nonlinearFactors_.error(calculateEstimate()));
gttoc(evaluate_error_after);
return result;
}
/* ************************************************************************* */
void ISAM2::marginalizeLeaves(const FastList<Key>& leafKeys)
{
// Convert set of keys into a set of indices
FastSet<Index> indices;
BOOST_FOREACH(Key key, leafKeys) {
indices.insert(ordering_[key]);
}
// Keep track of marginal factors - map from clique to the marginal factors
// that should be incorporated into it, passed up from it's children.
multimap<sharedClique, GaussianFactor::shared_ptr> marginalFactors;
// Remove each variable and its subtrees
BOOST_REVERSE_FOREACH(Index j, indices) {
if(nodes_[j]) { // If the index was not already removed by removing another subtree
sharedClique clique = nodes_[j];
// See if we should remove the whole clique
bool marginalizeEntireClique = true;
BOOST_FOREACH(Index frontal, clique->conditional()->frontals()) {
if(indices.find(frontal) == indices.end()) {
marginalizeEntireClique = false;
break; } }
// Remove either the whole clique or part of it
if(marginalizeEntireClique) {
// Remove the whole clique and its subtree, and keep the marginal factor.
GaussianFactor::shared_ptr marginalFactor = clique->cachedFactor();
// We do not need the marginal factors associated with this clique
// because their information is already incorporated in the new
// marginal factor. So, now associate this marginal factor with the
// parent of this clique.
marginalFactors.insert(make_pair(clique->parent(), marginalFactor));
// Now remove this clique and its subtree - all of its marginal
// information has been stored in marginalFactors.
const Cliques removedCliques = this->removeSubtree(clique); // Remove the subtree and throw away the cliques
BOOST_FOREACH(const sharedClique& removedClique, removedCliques) {
marginalFactors.erase(removedClique);
BOOST_FOREACH(Index indexInClique, removedClique->conditional()->frontals()) {
if(indices.find(indexInClique) == indices.end())
throw runtime_error("Requesting to marginalize variables that are not leaves, the ISAM2 object is now in an inconsistent state so should no longer be used."); }
}
}
else {
// Reeliminate the current clique and the marginals from its children,
// then keep only the marginal on the non-marginalized variables. We
// get the childrens' marginals from any existing children, plus
// the marginals from the marginalFactors multimap, which come from any
// subtrees already marginalized out.
// Add child marginals and remove marginalized subtrees
GaussianFactorGraph graph;
FastSet<size_t> factorsInSubtreeRoot;
Cliques subtreesToRemove;
BOOST_FOREACH(const sharedClique& child, clique->children()) {
// Remove subtree if child depends on any marginalized keys
BOOST_FOREACH(Index parentIndex, child->conditional()->parents()) {
if(indices.find(parentIndex) != indices.end()) {
subtreesToRemove.push_back(child);
graph.push_back(child->cachedFactor()); // Add child marginal
break;
}
}
}
Cliques childrenRemoved;
BOOST_FOREACH(const sharedClique& childToRemove, subtreesToRemove) {
const Cliques removedCliques = this->removeSubtree(childToRemove); // Remove the subtree and throw away the cliques
childrenRemoved.insert(childrenRemoved.end(), removedCliques.begin(), removedCliques.end());
BOOST_FOREACH(const sharedClique& removedClique, removedCliques) {
marginalFactors.erase(removedClique);
BOOST_FOREACH(Index indexInClique, removedClique->conditional()->frontals()) {
if(indices.find(indexInClique) == indices.end())
throw runtime_error("Requesting to marginalize variables that are not leaves, the ISAM2 object is now in an inconsistent state so should no longer be used."); }
}
}
// Gather remaining children after we removed marginalized subtrees
vector<sharedClique> orphans(clique->children().begin(), clique->children().end());
// Add the factors that are pulled into the current clique by the marginalized variables.
// These are the factors that involve *marginalized* frontal variables in this clique
// but do not involve frontal variables of any of its children.
FastSet<size_t> factorsFromMarginalizedInClique;
BOOST_FOREACH(Index indexInClique, clique->conditional()->frontals()) {
if(indices.find(indexInClique) != indices.end())
factorsFromMarginalizedInClique.insert(variableIndex_[indexInClique].begin(), variableIndex_[indexInClique].end()); }
BOOST_FOREACH(const sharedClique& removedChild, childrenRemoved) {
BOOST_FOREACH(Index indexInClique, removedChild->conditional()->frontals()) {
BOOST_FOREACH(size_t factorInvolving, variableIndex_[indexInClique]) {
factorsFromMarginalizedInClique.erase(factorInvolving); } } }
BOOST_FOREACH(size_t i, factorsFromMarginalizedInClique) {
graph.push_back(nonlinearFactors_[i]->linearize(theta_, ordering_)); }
// Remove the current clique
sharedClique parent = clique->parent();
this->removeClique(clique);
// Reeliminate the linear graph to get the marginal and discard the conditional
const FastSet<Index> cliqueFrontals(clique->conditional()->beginFrontals(), clique->conditional()->endFrontals());
FastSet<Index> cliqueFrontalsToEliminate;
std::set_intersection(cliqueFrontals.begin(), cliqueFrontals.end(), indices.begin(), indices.end(),
std::inserter(cliqueFrontalsToEliminate, cliqueFrontalsToEliminate.end()));
vector<Index> cliqueFrontalsToEliminateV(cliqueFrontalsToEliminate.begin(), cliqueFrontalsToEliminate.end());
pair<GaussianConditional::shared_ptr, GaussianFactorGraph> eliminationResult1 =
graph.eliminate(cliqueFrontalsToEliminateV,
params_.factorization==ISAM2Params::QR ? EliminateQR : EliminatePreferCholesky);
// Add the resulting marginal
BOOST_FOREACH(const GaussianFactor::shared_ptr& marginal, eliminationResult1.second) {
if(marginal)
marginalFactors.insert(make_pair(clique, marginal)); }
// Recover the conditional on the remaining subset of frontal variables
// of this clique being martially marginalized.
size_t nToEliminate = std::find(clique->conditional()->beginFrontals(), clique->conditional()->endFrontals(), j) - clique->conditional()->begin() + 1;
GaussianFactorGraph graph2;
graph2.push_back(clique->conditional()->toFactor());
GaussianFactorGraph::EliminationResult eliminationResult2 =
params_.factorization == ISAM2Params::QR ?
EliminateQR(graph2, nToEliminate) :
EliminatePreferCholesky(graph2, nToEliminate);
GaussianFactorGraph graph3;
graph3.push_back(eliminationResult2.second);
GaussianFactorGraph::EliminationResult eliminationResult3 =
params_.factorization == ISAM2Params::QR ?
EliminateQR(graph3, clique->conditional()->nrFrontals() - nToEliminate) :
EliminatePreferCholesky(graph3, clique->conditional()->nrFrontals() - nToEliminate);
sharedClique newClique = boost::make_shared<Clique>(make_pair(eliminationResult3.first, clique->cachedFactor()));
// Add the marginalized clique to the BayesTree
this->addClique(newClique, parent);
// Add the orphans
BOOST_FOREACH(const sharedClique& orphan, orphans) {
this->addClique(orphan, newClique); }
}
}
}
// At this point we have updated the BayesTree, now update the remaining iSAM2 data structures
// Gather factors to add - the new marginal factors
GaussianFactorGraph factorsToAdd;
typedef pair<sharedClique, GaussianFactor::shared_ptr> Clique_Factor;
BOOST_FOREACH(const Clique_Factor& clique_factor, marginalFactors) {
if(clique_factor.second)
factorsToAdd.push_back(clique_factor.second);
nonlinearFactors_.push_back(boost::make_shared<LinearContainerFactor>(
clique_factor.second, ordering_));
if(params_.cacheLinearizedFactors)
linearFactors_.push_back(clique_factor.second);
BOOST_FOREACH(Index factorIndex, *clique_factor.second) {
fixedVariables_.insert(ordering_.key(factorIndex)); }
}
variableIndex_.augment(factorsToAdd); // Augment the variable index
// Remove the factors to remove that have been summarized in the newly-added marginal factors
FastSet<size_t> factorIndicesToRemove;
BOOST_FOREACH(Index j, indices) {
factorIndicesToRemove.insert(variableIndex_[j].begin(), variableIndex_[j].end()); }
vector<size_t> removedFactorIndices;
SymbolicFactorGraph removedFactors;
BOOST_FOREACH(size_t i, factorIndicesToRemove) {
removedFactorIndices.push_back(i);
removedFactors.push_back(nonlinearFactors_[i]->symbolic(ordering_));
nonlinearFactors_.remove(i);
if(params_.cacheLinearizedFactors)
linearFactors_.remove(i);
}
variableIndex_.remove(removedFactorIndices, removedFactors);
// Remove the marginalized variables
Impl::RemoveVariables(FastSet<Key>(leafKeys.begin(), leafKeys.end()), root_, theta_, variableIndex_, delta_, deltaNewton_, RgProd_,
deltaReplacedMask_, ordering_, nodes_, linearFactors_, fixedVariables_);
}
/* ************************************************************************* */
void ISAM2::updateDelta(bool forceFullSolve) const {
if(params_.optimizationParams.type() == typeid(ISAM2GaussNewtonParams)) {
// If using Gauss-Newton, update with wildfireThreshold
const ISAM2GaussNewtonParams& gaussNewtonParams =
boost::get<ISAM2GaussNewtonParams>(params_.optimizationParams);
const double effectiveWildfireThreshold = forceFullSolve ? 0.0 : gaussNewtonParams.wildfireThreshold;
gttic(Wildfire_update);
lastBacksubVariableCount = Impl::UpdateDelta(this->root(), deltaReplacedMask_, delta_, effectiveWildfireThreshold);
gttoc(Wildfire_update);
} else if(params_.optimizationParams.type() == typeid(ISAM2DoglegParams)) {
// If using Dogleg, do a Dogleg step
const ISAM2DoglegParams& doglegParams =
boost::get<ISAM2DoglegParams>(params_.optimizationParams);
// Do one Dogleg iteration
gttic(Dogleg_Iterate);
DoglegOptimizerImpl::IterationResult doglegResult(DoglegOptimizerImpl::Iterate(
*doglegDelta_, doglegParams.adaptationMode, *this, nonlinearFactors_, theta_, ordering_, nonlinearFactors_.error(theta_), doglegParams.verbose));
gttoc(Dogleg_Iterate);
gttic(Copy_dx_d);
// Update Delta and linear step
doglegDelta_ = doglegResult.Delta;
delta_ = doglegResult.dx_d; // Copy the VectorValues containing with the linear solution
gttoc(Copy_dx_d);
}
deltaUptodate_ = true;
}
/* ************************************************************************* */
Values ISAM2::calculateEstimate() const {
// We use ExpmapMasked here instead of regular expmap because the former
// handles Permuted<VectorValues>
gttic(Copy_Values);
Values ret(theta_);
gttoc(Copy_Values);
gttic(getDelta);
const VectorValues& delta(getDelta());
gttoc(getDelta);
gttic(Expmap);
vector<bool> mask(ordering_.size(), true);
Impl::ExpmapMasked(ret, delta, ordering_, mask);
gttoc(Expmap);
return ret;
}
/* ************************************************************************* */
Matrix ISAM2::marginalCovariance(Index key) const {
return marginalFactor(ordering_[key],
params_.factorization == ISAM2Params::QR ? EliminateQR : EliminatePreferCholesky)
->information().inverse();
}
/* ************************************************************************* */
Values ISAM2::calculateBestEstimate() const {
VectorValues delta(theta_.dims(ordering_));
internal::optimizeInPlace<Base>(this->root(), delta);
return theta_.retract(delta, ordering_);
}
/* ************************************************************************* */
const VectorValues& ISAM2::getDelta() const {
if(!deltaUptodate_)
updateDelta();
return delta_;
}
/* ************************************************************************* */
VectorValues optimize(const ISAM2& isam) {
gttic(allocateVectorValues);
VectorValues delta = *allocateVectorValues(isam);
gttoc(allocateVectorValues);
optimizeInPlace(isam, delta);
return delta;
}
/* ************************************************************************* */
void optimizeInPlace(const ISAM2& isam, VectorValues& delta) {
// We may need to update the solution calculations
if(!isam.deltaDoglegUptodate_) {
gttic(UpdateDoglegDeltas);
double wildfireThreshold = 0.0;
if(isam.params().optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
wildfireThreshold = boost::get<ISAM2GaussNewtonParams>(isam.params().optimizationParams).wildfireThreshold;
else if(isam.params().optimizationParams.type() == typeid(ISAM2DoglegParams))
wildfireThreshold = boost::get<ISAM2DoglegParams>(isam.params().optimizationParams).wildfireThreshold;
else
assert(false);
ISAM2::Impl::UpdateDoglegDeltas(isam, wildfireThreshold, isam.deltaReplacedMask_, isam.deltaNewton_, isam.RgProd_);
isam.deltaDoglegUptodate_ = true;
gttoc(UpdateDoglegDeltas);
}
gttic(copy_delta);
delta = isam.deltaNewton_;
gttoc(copy_delta);
}
/* ************************************************************************* */
VectorValues optimizeGradientSearch(const ISAM2& isam) {
gttic(Allocate_VectorValues);
VectorValues grad = *allocateVectorValues(isam);
gttoc(Allocate_VectorValues);
optimizeGradientSearchInPlace(isam, grad);
return grad;
}
/* ************************************************************************* */
void optimizeGradientSearchInPlace(const ISAM2& isam, VectorValues& grad) {
// We may need to update the solution calcaulations
if(!isam.deltaDoglegUptodate_) {
gttic(UpdateDoglegDeltas);
double wildfireThreshold = 0.0;
if(isam.params().optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
wildfireThreshold = boost::get<ISAM2GaussNewtonParams>(isam.params().optimizationParams).wildfireThreshold;
else if(isam.params().optimizationParams.type() == typeid(ISAM2DoglegParams))
wildfireThreshold = boost::get<ISAM2DoglegParams>(isam.params().optimizationParams).wildfireThreshold;
else
assert(false);
ISAM2::Impl::UpdateDoglegDeltas(isam, wildfireThreshold, isam.deltaReplacedMask_, isam.deltaNewton_, isam.RgProd_);
isam.deltaDoglegUptodate_ = true;
gttoc(UpdateDoglegDeltas);
}
gttic(Compute_Gradient);
// Compute gradient (call gradientAtZero function, which is defined for various linear systems)
gradientAtZero(isam, grad);
double gradientSqNorm = grad.dot(grad);
gttoc(Compute_Gradient);
gttic(Compute_minimizing_step_size);
// Compute minimizing step size
double RgNormSq = isam.RgProd_.asVector().squaredNorm();
double step = -gradientSqNorm / RgNormSq;
gttoc(Compute_minimizing_step_size);
gttic(Compute_point);
// Compute steepest descent point
scal(step, grad);
gttoc(Compute_point);
}
/* ************************************************************************* */
VectorValues gradient(const ISAM2& bayesTree, const VectorValues& x0) {
return gradient(FactorGraph<JacobianFactor>(bayesTree), x0);
}
/* ************************************************************************* */
static void gradientAtZeroTreeAdder(const boost::shared_ptr<ISAM2Clique>& root, VectorValues& g) {
// Loop through variables in each clique, adding contributions
int variablePosition = 0;
for(GaussianConditional::const_iterator jit = root->conditional()->begin(); jit != root->conditional()->end(); ++jit) {
const int dim = root->conditional()->dim(jit);
g[*jit] += root->gradientContribution().segment(variablePosition, dim);
variablePosition += dim;
}
// Recursively add contributions from children
typedef boost::shared_ptr<ISAM2Clique> sharedClique;
BOOST_FOREACH(const sharedClique& child, root->children()) {
gradientAtZeroTreeAdder(child, g);
}
}
/* ************************************************************************* */
void gradientAtZero(const ISAM2& bayesTree, VectorValues& g) {
// Zero-out gradient
g.setZero();
// Sum up contributions for each clique
if(bayesTree.root())
gradientAtZeroTreeAdder(bayesTree.root(), g);
}
}
/// namespace gtsam
#endif