236 lines
9.5 KiB
C++
236 lines
9.5 KiB
C++
/**
|
|
* @file ClusterTree-inst.h
|
|
* @date Oct 8, 2013
|
|
* @author Kai Ni
|
|
* @author Richard Roberts
|
|
* @author Frank Dellaert
|
|
* @brief Collects factorgraph fragments defined on variable clusters, arranged in a tree
|
|
*/
|
|
|
|
#include <gtsam/inference/ClusterTree.h>
|
|
#include <gtsam/inference/BayesTree.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/base/timing.h>
|
|
#include <gtsam/base/treeTraversal-inst.h>
|
|
|
|
#include <boost/foreach.hpp>
|
|
#include <boost/bind.hpp>
|
|
|
|
namespace gtsam {
|
|
namespace {
|
|
/* ************************************************************************* */
|
|
// Elimination traversal data - stores a pointer to the parent data and collects the factors
|
|
// resulting from elimination of the children. Also sets up BayesTree cliques with parent and
|
|
// child pointers.
|
|
template<class CLUSTERTREE>
|
|
struct EliminationData {
|
|
EliminationData* const parentData;
|
|
size_t myIndexInParent;
|
|
FastVector<typename CLUSTERTREE::sharedFactor> childFactors;
|
|
boost::shared_ptr<typename CLUSTERTREE::BayesTreeType::Node> bayesTreeNode;
|
|
EliminationData(EliminationData* _parentData, size_t nChildren) :
|
|
parentData(_parentData), bayesTreeNode(
|
|
boost::make_shared<typename CLUSTERTREE::BayesTreeType::Node>()) {
|
|
if (parentData) {
|
|
myIndexInParent = parentData->childFactors.size();
|
|
parentData->childFactors.push_back(typename CLUSTERTREE::sharedFactor());
|
|
} else {
|
|
myIndexInParent = 0;
|
|
}
|
|
// Set up BayesTree parent and child pointers
|
|
if (parentData) {
|
|
if (parentData->parentData) // If our parent is not the dummy node
|
|
bayesTreeNode->parent_ = parentData->bayesTreeNode;
|
|
parentData->bayesTreeNode->children.push_back(bayesTreeNode);
|
|
}
|
|
}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
// Elimination pre-order visitor - just creates the EliminationData structure for the visited
|
|
// node.
|
|
template<class CLUSTERTREE>
|
|
EliminationData<CLUSTERTREE> eliminationPreOrderVisitor(
|
|
const typename CLUSTERTREE::sharedNode& node,
|
|
EliminationData<CLUSTERTREE>& parentData) {
|
|
EliminationData<CLUSTERTREE> myData(&parentData, node->children.size());
|
|
myData.bayesTreeNode->problemSize_ = node->problemSize();
|
|
return myData;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Elimination post-order visitor - combine the child factors with our own factors, add the
|
|
// resulting conditional to the BayesTree, and add the remaining factor to the parent.
|
|
template<class CLUSTERTREE>
|
|
struct EliminationPostOrderVisitor {
|
|
const typename CLUSTERTREE::Eliminate& eliminationFunction;
|
|
typename CLUSTERTREE::BayesTreeType::Nodes& nodesIndex;
|
|
EliminationPostOrderVisitor(
|
|
const typename CLUSTERTREE::Eliminate& eliminationFunction,
|
|
typename CLUSTERTREE::BayesTreeType::Nodes& nodesIndex) :
|
|
eliminationFunction(eliminationFunction), nodesIndex(nodesIndex) {
|
|
}
|
|
void operator()(const typename CLUSTERTREE::sharedNode& node,
|
|
EliminationData<CLUSTERTREE>& myData) {
|
|
// Typedefs
|
|
typedef typename CLUSTERTREE::sharedFactor sharedFactor;
|
|
typedef typename CLUSTERTREE::FactorType FactorType;
|
|
typedef typename CLUSTERTREE::FactorGraphType FactorGraphType;
|
|
typedef typename CLUSTERTREE::ConditionalType ConditionalType;
|
|
typedef typename CLUSTERTREE::BayesTreeType::Node BTNode;
|
|
|
|
// Gather factors
|
|
FactorGraphType gatheredFactors;
|
|
gatheredFactors.reserve(node->factors.size() + node->children.size());
|
|
gatheredFactors += node->factors;
|
|
gatheredFactors += myData.childFactors;
|
|
|
|
// Check for Bayes tree orphan subtrees, and add them to our children
|
|
BOOST_FOREACH(const sharedFactor& f, node->factors) {
|
|
if (const BayesTreeOrphanWrapper<BTNode>* asSubtree =
|
|
dynamic_cast<const BayesTreeOrphanWrapper<BTNode>*>(f.get())) {
|
|
myData.bayesTreeNode->children.push_back(asSubtree->clique);
|
|
asSubtree->clique->parent_ = myData.bayesTreeNode;
|
|
}
|
|
}
|
|
|
|
// Do dense elimination step
|
|
std::pair<boost::shared_ptr<ConditionalType>, boost::shared_ptr<FactorType> > eliminationResult =
|
|
eliminationFunction(gatheredFactors, node->orderedFrontalKeys);
|
|
|
|
// Store conditional in BayesTree clique, and in the case of ISAM2Clique also store the remaining factor
|
|
myData.bayesTreeNode->setEliminationResult(eliminationResult);
|
|
|
|
// Fill nodes index - we do this here instead of calling insertRoot at the end to avoid
|
|
// putting orphan subtrees in the index - they'll already be in the index of the ISAM2
|
|
// object they're added to.
|
|
BOOST_FOREACH(const Key& j, myData.bayesTreeNode->conditional()->frontals())
|
|
nodesIndex.insert(std::make_pair(j, myData.bayesTreeNode));
|
|
|
|
// Store remaining factor in parent's gathered factors
|
|
if (!eliminationResult.second->empty())
|
|
myData.parentData->childFactors[myData.myIndexInParent] =
|
|
eliminationResult.second;
|
|
}
|
|
};
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class BAYESTREE, class GRAPH>
|
|
void ClusterTree<BAYESTREE, GRAPH>::Cluster::print(const std::string& s,
|
|
const KeyFormatter& keyFormatter) const {
|
|
std::cout << s << " (" << problemSize_ << ")";
|
|
PrintKeyVector(orderedFrontalKeys);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class BAYESTREE, class GRAPH>
|
|
void ClusterTree<BAYESTREE, GRAPH>::Cluster::mergeChildren(
|
|
const std::vector<bool>& merge) {
|
|
gttic(Cluster::mergeChildren);
|
|
|
|
// Count how many keys, factors and children we'll end up with
|
|
size_t nrKeys = orderedFrontalKeys.size();
|
|
size_t nrFactors = factors.size();
|
|
size_t nrNewChildren = 0;
|
|
// Loop over children
|
|
size_t i = 0;
|
|
BOOST_FOREACH(const sharedNode& child, children) {
|
|
if (merge[i]) {
|
|
nrKeys += child->orderedFrontalKeys.size();
|
|
nrFactors += child->factors.size();
|
|
nrNewChildren += child->children.size();
|
|
} else {
|
|
nrNewChildren += 1; // we keep the child
|
|
}
|
|
++i;
|
|
}
|
|
|
|
// now reserve space, and really merge
|
|
orderedFrontalKeys.reserve(nrKeys);
|
|
factors.reserve(nrFactors);
|
|
typename Node::Children newChildren;
|
|
// newChildren.reserve(nrNewChildren);
|
|
i = 0;
|
|
BOOST_FOREACH(const sharedNode& child, children) {
|
|
if (merge[i]) {
|
|
// Merge keys. For efficiency, we add keys in reverse order at end, calling reverse after..
|
|
orderedFrontalKeys.insert(orderedFrontalKeys.end(),
|
|
child->orderedFrontalKeys.rbegin(), child->orderedFrontalKeys.rend());
|
|
// Merge keys, factors, and children.
|
|
factors.insert(factors.end(), child->factors.begin(),
|
|
child->factors.end());
|
|
newChildren.insert(newChildren.end(), child->children.begin(),
|
|
child->children.end());
|
|
// Increment problem size
|
|
problemSize_ = std::max(problemSize_, child->problemSize_);
|
|
// Increment number of frontal variables
|
|
} else {
|
|
newChildren.push_back(child); // we keep the child
|
|
}
|
|
++i;
|
|
}
|
|
children = newChildren;
|
|
std::reverse(orderedFrontalKeys.begin(), orderedFrontalKeys.end());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class BAYESTREE, class GRAPH>
|
|
void ClusterTree<BAYESTREE, GRAPH>::print(const std::string& s,
|
|
const KeyFormatter& keyFormatter) const {
|
|
treeTraversal::PrintForest(*this, s, keyFormatter);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class BAYESTREE, class GRAPH>
|
|
ClusterTree<BAYESTREE, GRAPH>& ClusterTree<BAYESTREE, GRAPH>::operator=(
|
|
const This& other) {
|
|
// Start by duplicating the tree.
|
|
roots_ = treeTraversal::CloneForest(other);
|
|
|
|
// Assign the remaining factors - these are pointers to factors in the original factor graph and
|
|
// we do not clone them.
|
|
remainingFactors_ = other.remainingFactors_;
|
|
|
|
return *this;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
template<class BAYESTREE, class GRAPH>
|
|
std::pair<boost::shared_ptr<BAYESTREE>, boost::shared_ptr<GRAPH> > ClusterTree<
|
|
BAYESTREE, GRAPH>::eliminate(const Eliminate& function) const {
|
|
gttic(ClusterTree_eliminate);
|
|
// Do elimination (depth-first traversal). The rootsContainer stores a 'dummy' BayesTree node
|
|
// that contains all of the roots as its children. rootsContainer also stores the remaining
|
|
// uneliminated factors passed up from the roots.
|
|
boost::shared_ptr<BayesTreeType> result = boost::make_shared<BayesTreeType>();
|
|
EliminationData<This> rootsContainer(0, roots_.size());
|
|
EliminationPostOrderVisitor<This> visitorPost(function, result->nodes_);
|
|
{
|
|
TbbOpenMPMixedScope threadLimiter; // Limits OpenMP threads since we're mixing TBB and OpenMP
|
|
treeTraversal::DepthFirstForestParallel(*this, rootsContainer,
|
|
eliminationPreOrderVisitor<This>, visitorPost, 10);
|
|
}
|
|
|
|
// Create BayesTree from roots stored in the dummy BayesTree node.
|
|
result->roots_.insert(result->roots_.end(),
|
|
rootsContainer.bayesTreeNode->children.begin(),
|
|
rootsContainer.bayesTreeNode->children.end());
|
|
|
|
// Add remaining factors that were not involved with eliminated variables
|
|
boost::shared_ptr<FactorGraphType> allRemainingFactors = boost::make_shared<
|
|
FactorGraphType>();
|
|
allRemainingFactors->reserve(
|
|
remainingFactors_.size() + rootsContainer.childFactors.size());
|
|
allRemainingFactors->push_back(remainingFactors_.begin(),
|
|
remainingFactors_.end());
|
|
BOOST_FOREACH(const sharedFactor& factor, rootsContainer.childFactors)
|
|
if (factor)
|
|
allRemainingFactors->push_back(factor);
|
|
|
|
// Return result
|
|
return std::make_pair(result, allRemainingFactors);
|
|
}
|
|
|
|
}
|