gtsam/cpp/LinearFactorGraph.h

123 lines
3.3 KiB
C++

/**
* @file LinearFactorGraph.h
* @brief Linear Factor Graph where all factors are Gaussians
* @author Kai Ni
* @author Christian Potthast
* @author Alireza Fathi
*/
// $Id: LinearFactorGraph.h,v 1.24 2009/08/14 20:48:51 acunning Exp $
// \callgraph
#pragma once
#include <boost/shared_ptr.hpp>
#include "LinearFactor.h"
#include "VectorConfig.h"
#include "FactorGraph.h"
#include "ChordalBayesNet.h"
namespace gtsam {
/**
* A Linear Factor Graph is a factor graph where all factors are Gaussian, i.e.
* Factor == LinearFactor
* VectorConfig = A configuration of vectors
* Most of the time, linear factor graphs arise by linearizing a non-linear factor graph.
*/
class LinearFactorGraph : public FactorGraph<LinearFactor> {
public:
/**
* Default constructor
*/
LinearFactorGraph() {}
/**
* Constructor that receives a Chordal Bayes Net and returns a LinearFactorGraph
*/
LinearFactorGraph(const ChordalBayesNet& CBN);
/** unnormalized error */
double error(const VectorConfig& c) const {
double total_error = 0.;
// iterate over all the factors_ to accumulate the log probabilities
for (const_iterator factor = factors_.begin(); factor != factors_.end(); factor++)
total_error += (*factor)->error(c);
return total_error;
}
/** Unnormalized probability. O(n) */
double probPrime(const VectorConfig& c) const {
return exp(-0.5 * error(c));
}
/**
* given a chordal bayes net, sets the linear factor graph identical to that CBN
* FD: imperative !!
*/
void setCBN(const ChordalBayesNet& CBN);
/**
* find the separator, i.e. all the nodes that have at least one
* common factor with the given node. FD: not used AFAIK.
*/
std::set<std::string> find_separator(const std::string& key) const;
/**
* eliminate factor graph in place(!) in the given order, yielding
* a chordal Bayes net
*/
boost::shared_ptr<ChordalBayesNet> eliminate(const Ordering& ordering);
/**
* Same as eliminate but allows for passing an incomplete ordering
* that does not completely eliminate the graph
*/
boost::shared_ptr<ChordalBayesNet> eliminate_partially(const Ordering& ordering);
/**
* optimize a linear factor graph
* @param ordering fg in order
*/
VectorConfig optimize(const Ordering& ordering);
/**
* static function that combines two factor graphs
* @param const &lfg1 Linear factor graph
* @param const &lfg2 Linear factor graph
* @return a new combined factor graph
*/
static LinearFactorGraph combine2(const LinearFactorGraph& lfg1,
const LinearFactorGraph& lfg2);
/**
* combine two factor graphs
* @param *lfg Linear factor graph
*/
void combine(const LinearFactorGraph &lfg);
/**
* Find all variables and their dimensions
* @return The set of all variable/dimension pairs
*/
VariableSet variables() const;
/**
* Add zero-mean i.i.d. Gaussian prior terms to each variable
* @param sigma Standard deviation of Gaussian
*/
LinearFactorGraph add_priors(double sigma) const;
/**
* Return (dense) matrix associated with factor graph
* @param ordering of variables needed for matrix column order
*/
std::pair<Matrix,Vector> matrix (const Ordering& ordering) const;
};
}