102 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    SFMExampleExpressions.cpp
 | |
|  * @brief   A structure-from-motion example done with Expressions
 | |
|  * @author  Frank Dellaert
 | |
|  * @author  Duy-Nguyen Ta
 | |
|  * @date    October 1, 2014
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * This is the Expression version of SFMExample
 | |
|  * See detailed description of headers there, this focuses on explaining the AD part
 | |
|  */
 | |
| 
 | |
| // The two new headers that allow using our Automatic Differentiation Expression framework
 | |
| #include <gtsam_unstable/slam/expressions.h>
 | |
| #include <gtsam_unstable/nonlinear/ExpressionFactor.h>
 | |
| 
 | |
| // Header order is close to far
 | |
| #include <examples/SFMdata.h>
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/DoglegOptimizer.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| 
 | |
| #include <vector>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
| 
 | |
|   Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
 | |
|   noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
 | |
| 
 | |
|   // Create the set of ground-truth landmarks and poses
 | |
|   vector<Point3> points = createPoints();
 | |
|   vector<Pose3> poses = createPoses();
 | |
| 
 | |
|   // Create a factor graph
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // Specify uncertainty on first pose prior
 | |
|   noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
 | |
| 
 | |
|   // Here we don't use a PriorFactor but directly the ExpressionFactor class
 | |
|   // The object x0 is an Expression, and we create a factor wanting it to be equal to poses[0]
 | |
|   Pose3_ x0('x',0);
 | |
|   graph.push_back(ExpressionFactor<Pose3>(poseNoise, poses[0], x0));
 | |
| 
 | |
|   // We create a constant Expression for the calibration here
 | |
|   Cal3_S2_ cK(K);
 | |
| 
 | |
|   // Simulated measurements from each camera pose, adding them to the factor graph
 | |
|   for (size_t i = 0; i < poses.size(); ++i) {
 | |
|     Pose3_ x('x', i);
 | |
|     SimpleCamera camera(poses[i], K);
 | |
|     for (size_t j = 0; j < points.size(); ++j) {
 | |
|       Point2 measurement = camera.project(points[j]);
 | |
|       // Below an expression for the prediction of the measurement:
 | |
|       Point3_ p('l', j);
 | |
|       Point2_ prediction = uncalibrate(cK, project(transform_to(x, p)));
 | |
|       // Again, here we use a ExpressionFactor
 | |
|       graph.push_back(ExpressionFactor<Point2>(measurementNoise, measurement, prediction));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add prior on first point to constrain scale, again with ExpressionFactor
 | |
|   noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
 | |
|   graph.push_back(ExpressionFactor<Point3>(pointNoise, points[0], Point3_('l', 0)));
 | |
| 
 | |
|   // Create perturbed initial
 | |
|   Values initialEstimate;
 | |
|   for (size_t i = 0; i < poses.size(); ++i)
 | |
|     initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
 | |
|   for (size_t j = 0; j < points.size(); ++j)
 | |
|     initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
 | |
|   cout << "initial error = " << graph.error(initialEstimate) << endl;
 | |
| 
 | |
|   /* Optimize the graph and print results */
 | |
|   Values result = DoglegOptimizer(graph, initialEstimate).optimize();
 | |
|   cout << "final error = " << graph.error(result) << endl;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |