107 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			107 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  * @file   testGradientDescentOptimizer.cpp
 | |
|  * @brief  
 | |
|  * @author ydjian
 | |
|  * @date   Jun 11, 2012
 | |
|  */
 | |
| 
 | |
| #include <gtsam/slam/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/nonlinear/NonlinearConjugateGradientOptimizer.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactorGraph.h>
 | |
| #include <gtsam/nonlinear/Values.h>
 | |
| #include <gtsam/geometry/Pose2.h>
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #include <boost/make_shared.hpp>
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| 
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| 
 | |
| boost::tuple<NonlinearFactorGraph, Values> generateProblem() {
 | |
| 
 | |
|   // 1. Create graph container and add factors to it
 | |
|   NonlinearFactorGraph graph ;
 | |
| 
 | |
|   // 2a. Add Gaussian prior
 | |
|   Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
 | |
|   SharedDiagonal priorNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1));
 | |
|   graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
 | |
| 
 | |
|   // 2b. Add odometry factors
 | |
|   SharedDiagonal odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
 | |
|   graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0   ), odometryNoise));
 | |
|   graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | |
|   graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | |
|   graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise));
 | |
| 
 | |
|   // 2c. Add pose constraint
 | |
|   SharedDiagonal constraintUncertainty = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
 | |
|   graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2.0, 0.0, M_PI_2), constraintUncertainty));
 | |
| 
 | |
|   // 3. Create the data structure to hold the initialEstimate estinmate to the solution
 | |
|   Values initialEstimate;
 | |
|   Pose2 x1(0.5, 0.0, 0.2   ); initialEstimate.insert(1, x1);
 | |
|   Pose2 x2(2.3, 0.1,-0.2   ); initialEstimate.insert(2, x2);
 | |
|   Pose2 x3(4.1, 0.1, M_PI_2); initialEstimate.insert(3, x3);
 | |
|   Pose2 x4(4.0, 2.0, M_PI  ); initialEstimate.insert(4, x4);
 | |
|   Pose2 x5(2.1, 2.1,-M_PI_2); initialEstimate.insert(5, x5);
 | |
| 
 | |
|   return boost::tie(graph, initialEstimate);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(optimize, GradientDescentOptimizer) {
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   Values initialEstimate;
 | |
| 
 | |
|   boost::tie(graph, initialEstimate) = generateProblem();
 | |
|   // cout << "initial error = " << graph.error(initialEstimate) << endl ;
 | |
| 
 | |
|   // Single Step Optimization using Levenberg-Marquardt
 | |
|   NonlinearOptimizerParams param;
 | |
|   param.maxIterations = 500;    /* requires a larger number of iterations to converge */
 | |
|   param.verbosity = NonlinearOptimizerParams::SILENT;
 | |
| 
 | |
|   NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param);
 | |
|   Values result = optimizer.optimize();
 | |
| //  cout << "gd1 solver final error = " << graph.error(result) << endl;
 | |
| 
 | |
|   /* the optimality of the solution is not comparable to the */
 | |
|   DOUBLES_EQUAL(0.0, graph.error(result), 1e-2);
 | |
| 
 | |
|   CHECK(1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(optimize, ConjugateGradientOptimizer) {
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   Values initialEstimate;
 | |
| 
 | |
|   boost::tie(graph, initialEstimate) = generateProblem();
 | |
| //  cout << "initial error = " << graph.error(initialEstimate) << endl ;
 | |
| 
 | |
|   // Single Step Optimization using Levenberg-Marquardt
 | |
|   NonlinearOptimizerParams param;
 | |
|   param.maxIterations = 500;    /* requires a larger number of iterations to converge */
 | |
|   param.verbosity = NonlinearOptimizerParams::SILENT;
 | |
| 
 | |
|   NonlinearConjugateGradientOptimizer optimizer(graph, initialEstimate, param);
 | |
|   Values result = optimizer.optimize();
 | |
| //  cout << "cg final error = " << graph.error(result) << endl;
 | |
| 
 | |
|   /* the optimality of the solution is not comparable to the */
 | |
|   DOUBLES_EQUAL(0.0, graph.error(result), 1e-2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 |