gtsam/cpp/LinearFactor.cpp

378 lines
11 KiB
C++

/**
* @file LinearFactor.cpp
* @brief Linear Factor....A Gaussian
* @brief linearFactor
* @author Christian Potthast
*/
#include <boost/foreach.hpp>
#include <boost/assign/list_inserter.hpp> // for 'insert()'
#include <boost/assign/std/list.hpp> // for operator += in Ordering
#include "Matrix.h"
#include "Ordering.h"
#include "ConditionalGaussian.h"
#include "LinearFactor.h"
using namespace std;
using namespace boost::assign;
namespace ublas = boost::numeric::ublas;
// trick from some reading group
#define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL)
using namespace gtsam;
typedef pair<const string, Matrix>& mypair;
/* ************************************************************************* */
LinearFactor::LinearFactor(const boost::shared_ptr<ConditionalGaussian>& cg) :
b_(cg->get_d()) {
As_.insert(make_pair(cg->key(), cg->get_R()));
std::map<std::string, Matrix>::const_iterator it = cg->parentsBegin();
for (; it != cg->parentsEnd(); it++) {
const std::string& j = it->first;
const Matrix& Aj = it->second;
As_.insert(make_pair(j, Aj));
}
// set sigmas from precisions
size_t n = b_.size();
sigmas_ = cg->get_sigmas();
}
/* ************************************************************************* */
LinearFactor::LinearFactor(const vector<shared_ptr> & factors)
{
bool verbose = false;
if (verbose) cout << "LinearFactor::LinearFactor (factors)" << endl;
// Create RHS and sigmas of right size by adding together row counts
size_t m = 0;
BOOST_FOREACH(shared_ptr factor, factors) m += factor->numberOfRows();
b_ = Vector(m);
sigmas_ = Vector(m);
size_t pos = 0; // save last position inserted into the new rhs vector
// iterate over all factors
BOOST_FOREACH(shared_ptr factor, factors){
if (verbose) factor->print();
// number of rows for factor f
const size_t mf = factor->numberOfRows();
// copy the rhs vector from factor to b
const Vector bf = factor->get_b();
for (size_t i=0; i<mf; i++) b_(pos+i) = bf(i);
// copy the sigmas_
for (size_t i=0; i<mf; i++) sigmas_(pos+i) = factor->sigmas_(i);
// update the matrices
append_factor(factor,m,pos);
pos += mf;
}
if (verbose) cout << "LinearFactor::LinearFactor done" << endl;
}
/* ************************************************************************* */
void LinearFactor::print(const string& s) const {
cout << s << endl;
if (empty()) cout << " empty" << endl;
else {
string j; Matrix A;
FOREACH_PAIR(j,A,As_) gtsam::print(A, "A["+j+"]=\n");
gtsam::print(b_,"b=");
gtsam::print(sigmas_, "sigmas = ");
}
}
/* ************************************************************************* */
size_t LinearFactor::getDim(const std::string& key) const {
const_iterator it = As_.find(key);
if (it != As_.end())
return it->second.size2();
else
return 0;
}
/* ************************************************************************* */
// Check if two linear factors are equal
bool LinearFactor::equals(const Factor<VectorConfig>& f, double tol) const {
const LinearFactor* lf = dynamic_cast<const LinearFactor*>(&f);
if (lf == NULL) return false;
if (empty()) return (lf->empty());
const_iterator it1 = As_.begin(), it2 = lf->As_.begin();
if(As_.size() != lf->As_.size()) return false;
for(; it1 != As_.end(); it1++, it2++) {
const string& j1 = it1->first, j2 = it2->first;
const Matrix A1 = it1->second, A2 = it2->second;
if (j1 != j2) return false;
if (!equal_with_abs_tol(A1,A2,tol))
return false;
}
if( !(::equal_with_abs_tol(b_, (lf->b_),tol)) )
return false;
if( !(::equal_with_abs_tol(sigmas_, (lf->sigmas_),tol)) )
return false;
return true;
}
/* ************************************************************************* */
// we might have multiple As, so iterate and subtract from b
double LinearFactor::error(const VectorConfig& c) const {
if (empty()) return 0;
Vector e = b_;
string j; Matrix Aj;
FOREACH_PAIR(j, Aj, As_)
e -= Vector(Aj * c[j]);
Vector weighted = ediv(e,sigmas_);
return 0.5 * inner_prod(weighted,weighted);
}
/* ************************************************************************* */
list<string> LinearFactor::keys() const {
list<string> result;
string j; Matrix A;
FOREACH_PAIR(j,A,As_)
result.push_back(j);
return result;
}
/* ************************************************************************* */
Dimensions LinearFactor::dimensions() const {
Dimensions result;
string j; Matrix A;
FOREACH_PAIR(j,A,As_)
result.insert(make_pair(j,A.size2()));
return result;
}
/* ************************************************************************* */
void LinearFactor::tally_separator(const string& key, set<string>& separator) const {
if(involves(key)) {
string j; Matrix A;
FOREACH_PAIR(j,A,As_)
if(j != key) separator.insert(j);
}
}
/* ************************************************************************* */
pair<Matrix,Vector> LinearFactor::matrix(const Ordering& ordering) const {
// get pointers to the matrices
vector<const Matrix *> matrices;
BOOST_FOREACH(string j, ordering) {
const Matrix& Aj = get_A(j);
matrices.push_back(&Aj);
}
// divide in sigma so error is indeed 0.5*|Ax-b|
Matrix t = diag(ediv(ones(sigmas_.size()),sigmas_));
Matrix A = t*collect(matrices);
return make_pair(A, t*b_);
}
/* ************************************************************************* */
Matrix LinearFactor::matrix_augmented(const Ordering& ordering) const {
// get pointers to the matrices
vector<const Matrix *> matrices;
BOOST_FOREACH(string j, ordering) {
const Matrix& Aj = get_A(j);
matrices.push_back(&Aj);
}
// load b into a matrix
Matrix B_mat(numberOfRows(), 1);
for (int i=0; i<b_.size(); ++i)
B_mat(i,0) = b_(i);
matrices.push_back(&B_mat);
// divide in sigma so error is indeed 0.5*|Ax-b|
Matrix t = diag(ediv(ones(sigmas_.size()),sigmas_));
Matrix A = t*collect(matrices);
return A;
}
/* ************************************************************************* */
boost::tuple<list<int>, list<int>, list<double> >
LinearFactor::sparse(const Ordering& ordering, const Dimensions& variables) const {
// declare return values
list<int> I,J;
list<double> S;
// loop over all variables in correct order
size_t column_start = 1;
BOOST_FOREACH(string key, ordering) {
try {
const Matrix& Aj = get_A(key);
for (size_t i = 0; i < Aj.size1(); i++) {
double sigma_i = sigmas_(i);
for (size_t j = 0; j < Aj.size2(); j++)
if (Aj(i, j) != 0.0) {
I.push_back(i + 1);
J.push_back(j + column_start);
S.push_back(Aj(i, j) / sigma_i);
}
}
} catch (std::invalid_argument& exception) {
// it's ok to not have a key in the ordering
}
// find dimension for this key
Dimensions::const_iterator it = variables.find(key);
// TODO: check if end() and throw exception if not found
int dim = it->second;
// advance column index to next block by adding dim(key)
column_start += dim;
}
// return the result
return boost::tuple<list<int>, list<int>, list<double> >(I,J,S);
}
/* ************************************************************************* */
void LinearFactor::append_factor(LinearFactor::shared_ptr f, const size_t m,
const size_t pos) {
bool verbose = false;
if (verbose) cout << "LinearFactor::append_factor" << endl;
// iterate over all matrices from the factor f
LinearFactor::const_iterator it = f->begin();
for (; it != f->end(); it++) {
string j = it->first;
Matrix A = it->second;
// find rows and columns
const size_t mrhs = A.size1(), n = A.size2();
// find the corresponding matrix among As
const_iterator mine = As_.find(j);
const bool exists = mine != As_.end();
// create the matrix or use existing
Matrix Anew = exists ? mine->second : zeros(m, n);
// copy the values in the existing matrix
for (size_t i = 0; i < mrhs; i++)
for (size_t j = 0; j < n; j++)
Anew(pos + i, j) = A(i, j);
// insert the matrix into the factor
if (exists) As_.erase(j);
insert(j, Anew);
}
if (verbose) cout << "LinearFactor::append_factor done" << endl;
}
/* ************************************************************************* */
/* Note, in place !!!!
* Do incomplete QR factorization for the first n columns
* We will do QR on all matrices and on RHS
* Then take first n rows and make a ConditionalGaussian,
* and last rows to make a new joint linear factor on separator
*/
/* ************************************************************************* */
pair<ConditionalGaussian::shared_ptr, LinearFactor::shared_ptr>
LinearFactor::eliminate(const string& key)
{
bool verbose = false;
if (verbose) cout << "LinearFactor::eliminate(" << key << ")" << endl;
// if this factor does not involve key, we exit with empty CG and LF
iterator it = As_.find(key);
if (it==As_.end()) {
// Conditional Gaussian is just a parent-less node with P(x)=1
LinearFactor::shared_ptr lf(new LinearFactor);
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(key));
return make_pair(cg,lf);
}
// create an internal ordering that eliminates key first
Ordering ordering;
ordering += key;
BOOST_FOREACH(string k, keys())
if (k != key) ordering += k;
// extract A, b from the combined linear factor (ensure that x is leading)
// use an augmented system [A b] to prevent copying
Matrix Rd = matrix_augmented(ordering);
size_t m = Rd.size1(); size_t n = Rd.size2()-1;
// get dimensions of the eliminated variable
size_t n1 = getDim(key);
// if m<n1, this factor cannot be eliminated
size_t maxRank = min(m,n);
if (maxRank<n1)
throw(domain_error("LinearFactor::eliminate: fewer constraints than unknowns"));
// Do in-place QR to get R, d of the augmented system
if (verbose) ::print(Rd,"Rd before");
householder(Rd, maxRank);
if (verbose) ::print(Rd,"Rd after");
// R as calculated by householder has inverse sigma on diagonal
// Use them to normalize R to unit-upper-triangular matrix
Vector sigmas(m); // standard deviations
if (verbose) cout << n1 << " " << n << " " << m << endl;
for (int i=0; i<maxRank; ++i) {
double Rii = Rd(i,i);
if (fabs(Rii)<1e-8) { maxRank=i; break;} // detect if rank < maxRank
sigmas(i) = 1.0/Rii; // calculate sigma
for (int j=0; j<=n; ++j) Rd(i,j) = Rd(i,j)*sigmas(i); // normalize
if (sigmas(i)<0) sigmas(i)=-sigmas(i); // make sure sigma positive
}
// extract RHS
Vector d(m);
for (int i=0; i<m; ++i)
d(i) = Rd(i,n);
// create base conditional Gaussian
ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(key,
sub(d, 0, n1), // form d vector
sub(Rd, 0, n1, 0, n1), // form R matrix
sub(sigmas, 0, n1))); // get standard deviations
// extract the block matrices for parents in both CG and LF
LinearFactor::shared_ptr lf(new LinearFactor);
size_t j = n1;
BOOST_FOREACH(string cur_key, ordering)
if (cur_key!=key) {
size_t dim = getDim(cur_key);
cg->add(cur_key, sub(Rd, 0, n1, j, j+dim));
lf->insert(cur_key, sub(Rd, n1, maxRank, j, j+dim));
j+=dim;
}
// Set sigmas
lf->sigmas_ = sub(sigmas,n1,maxRank);
// extract ds vector for the new b
lf->set_b(sub(d, n1, maxRank));
if (verbose) lf->print("lf");
return make_pair(cg, lf);
}
/* ************************************************************************* */
namespace gtsam {
string symbol(char c, int index) {
stringstream ss;
ss << c << index;
return ss.str();
}
}
/* ************************************************************************* */