81 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| % 
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief Simple robotics example using the pre-built planar SLAM domain
 | |
| % @author Alex Cunningham
 | |
| % @author Frank Dellaert
 | |
| % @author Chris Beall
 | |
| % @author Vadim Indelman
 | |
| % @author Can Erdogan
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| import gtsam.*
 | |
| 
 | |
| %% Assumptions
 | |
| %  - All values are axis aligned
 | |
| %  - Robot poses are facing along the X axis (horizontal, to the right in images)
 | |
| %  - We have full odometry for measurements
 | |
| %  - The robot is on a grid, moving 2 meters each step
 | |
| 
 | |
| %% Create graph container and add factors to it
 | |
| graph = NonlinearFactorGraph;
 | |
| 
 | |
| %% Add prior
 | |
| % gaussian for prior
 | |
| priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]);
 | |
| priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin
 | |
| graph.add(PriorFactorPose2(1, priorMean, priorNoise)); % add directly to graph
 | |
| 
 | |
| %% Add odometry
 | |
| % general noisemodel for odometry
 | |
| odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]);
 | |
| odometry = Pose2(2.0, 0.0, 0.0); % create a measurement for both factors (the same in this case)
 | |
| graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise));
 | |
| graph.add(BetweenFactorPose2(2, 3, odometry, odometryNoise));
 | |
| 
 | |
| %% Add measurements
 | |
| % general noisemodel for measurements
 | |
| measurementNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]);
 | |
| 
 | |
| % print
 | |
| graph.print('full graph');
 | |
| 
 | |
| %% Initialize to noisy points
 | |
| initialEstimate = Values;
 | |
| initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
 | |
| initialEstimate.insert(2, Pose2(2.3, 0.1,-0.2));
 | |
| initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
 | |
| 
 | |
| initialEstimate.print('initial estimate');
 | |
| 
 | |
| %% set up solver, choose ordering and optimize
 | |
| params = DoglegParams;
 | |
| params.setAbsoluteErrorTol(1e-15);
 | |
| params.setRelativeErrorTol(1e-15);
 | |
| params.setVerbosity('ERROR');
 | |
| params.setVerbosityDL('VERBOSE');
 | |
| params.setOrdering(graph.orderingCOLAMD());
 | |
| optimizer = DoglegOptimizer(graph, initialEstimate, params);                      
 | |
| 
 | |
| result = optimizer.optimizeSafely();
 | |
| result.print('final result');
 | |
| 
 | |
| %% Get the corresponding dense matrix
 | |
| ord = graph.orderingCOLAMD();
 | |
| gfg = graph.linearize(result);
 | |
| denseAb = gfg.augmentedJacobian;
 | |
| 
 | |
| %% Get sparse matrix A and RHS b
 | |
| IJS = gfg.sparseJacobian_();
 | |
| Ab=sparse(IJS(1,:),IJS(2,:),IJS(3,:));
 | |
| A = Ab(:,1:end-1);
 | |
| b = full(Ab(:,end));
 | |
| clf
 | |
| spy(A);
 | |
| title('Non-zero entries in measurement Jacobian');
 |