gtsam/matlab/createLinearFactorGraph.m

62 lines
1.1 KiB
Matlab

% create a linear factor graph
% The non-linear graph above evaluated at NoisyConfig
function fg = createGaussianFactorGraph()
c = createNoisyConfig();
% Create
fg = GaussianFactorGraph;
sigma1=.1;
% prior on x1
A11=eye(2);
b = - c.get('x1');
<<<<<<< .mine
f1 = LinearFactor('x1', A11, b, sigma1);
=======
f1 = GaussianFactor('x1', A11, b);
>>>>>>> .r1017
fg.push_back(f1);
% odometry between x1 and x2
sigma2=.1;
<<<<<<< .mine
A21=-eye(2);
A22=eye(2);
b = [.2;-.1];
f2 = LinearFactor('x1', A21, 'x2', A22, b,sigma2);
=======
f2 = GaussianFactor('x1', A21, 'x2', A22, b);
>>>>>>> .r1017
fg.push_back(f2);
% measurement between x1 and l1
sigma3=.2;
A31=-eye(2);
A33=eye(2);
b = [0;.2];
<<<<<<< .mine
f3 = LinearFactor('x1', A31, 'l1', A33, b,sigma3);
=======
f3 = GaussianFactor('x1', A31, 'l1', A32, b);
>>>>>>> .r1017
fg.push_back(f3);
% measurement between x2 and l1
sigma4=.2;
A42=-eye(2);
A43=eye(2);
b = [-.2;.3];
<<<<<<< .mine
f4 = LinearFactor('x2', A42, 'l1', A43, b,sigma4);
=======
f4 = GaussianFactor('x2', A41, 'l1', A42, b);
>>>>>>> .r1017
fg.push_back(f4);
end