953 lines
31 KiB
C++
953 lines
31 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testRot3.cpp
|
|
* @brief Unit tests for Rot3 class - common between Matrix and Quaternion
|
|
* @author Alireza Fathi
|
|
* @author Frank Dellaert
|
|
* @author Varun Agrawal
|
|
*/
|
|
|
|
#include <gtsam/geometry/Point3.h>
|
|
#include <gtsam/geometry/Rot3.h>
|
|
#include <gtsam/base/testLie.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
#include <gtsam/base/lieProxies.h>
|
|
|
|
#include <boost/math/constants/constants.hpp>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
GTSAM_CONCEPT_TESTABLE_INST(Rot3)
|
|
GTSAM_CONCEPT_LIE_INST(Rot3)
|
|
|
|
static Rot3 R = Rot3::Rodrigues(0.1, 0.4, 0.2);
|
|
static Point3 P(0.2, 0.7, -2.0);
|
|
static double error = 1e-9, epsilon = 0.001;
|
|
|
|
//******************************************************************************
|
|
TEST(Rot3 , Concept) {
|
|
BOOST_CONCEPT_ASSERT((IsGroup<Rot3 >));
|
|
BOOST_CONCEPT_ASSERT((IsManifold<Rot3 >));
|
|
BOOST_CONCEPT_ASSERT((IsLieGroup<Rot3 >));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, chart)
|
|
{
|
|
Matrix R = (Matrix(3, 3) << 0, 1, 0, 1, 0, 0, 0, 0, -1).finished();
|
|
Rot3 rot3(R);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, constructor)
|
|
{
|
|
Rot3 expected((Matrix)I_3x3);
|
|
Point3 r1(1,0,0), r2(0,1,0), r3(0,0,1);
|
|
Rot3 actual(r1, r2, r3);
|
|
CHECK(assert_equal(actual,expected));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, constructor2)
|
|
{
|
|
Matrix R = (Matrix(3, 3) << 0, 1, 0, 1, 0, 0, 0, 0, -1).finished();
|
|
Rot3 actual(R);
|
|
Rot3 expected(0, 1, 0, 1, 0, 0, 0, 0, -1);
|
|
CHECK(assert_equal(actual,expected));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, constructor3)
|
|
{
|
|
Rot3 expected(0, 1, 0, 1, 0, 0, 0, 0, -1);
|
|
Point3 r1(0,1,0), r2(1,0,0), r3(0,0,-1);
|
|
CHECK(assert_equal(expected,Rot3(r1,r2,r3)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, transpose)
|
|
{
|
|
Point3 r1(0,1,0), r2(1,0,0), r3(0,0,-1);
|
|
Rot3 R(0, 1, 0, 1, 0, 0, 0, 0, -1);
|
|
CHECK(assert_equal(R.inverse(),Rot3(r1,r2,r3)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, equals)
|
|
{
|
|
CHECK(R.equals(R));
|
|
Rot3 zero;
|
|
CHECK(!R.equals(zero));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Notice this uses J^2 whereas fast uses w*w', and has cos(t)*I + ....
|
|
Rot3 slow_but_correct_Rodrigues(const Vector& w) {
|
|
double t = w.norm();
|
|
Matrix3 J = skewSymmetric(w / t);
|
|
if (t < 1e-5) return Rot3();
|
|
Matrix3 R = I_3x3 + sin(t) * J + (1.0 - cos(t)) * (J * J);
|
|
return Rot3(R);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, AxisAngle)
|
|
{
|
|
Vector axis = Vector3(0., 1., 0.); // rotation around Y
|
|
double angle = 3.14 / 4.0;
|
|
Rot3 expected(0.707388, 0, 0.706825,
|
|
0, 1, 0,
|
|
-0.706825, 0, 0.707388);
|
|
Rot3 actual = Rot3::AxisAngle(axis, angle);
|
|
CHECK(assert_equal(expected,actual,1e-5));
|
|
Rot3 actual2 = Rot3::AxisAngle(axis, angle-2*M_PI);
|
|
CHECK(assert_equal(expected,actual2,1e-5));
|
|
|
|
axis = Vector3(0, 50, 0);
|
|
Rot3 actual3 = Rot3::AxisAngle(axis, angle);
|
|
CHECK(assert_equal(expected,actual3,1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, AxisAngle2)
|
|
{
|
|
// constructor from a rotation matrix, as doubles in *row-major* order.
|
|
Rot3 R1(-0.999957, 0.00922903, 0.00203116, 0.00926964, 0.999739, 0.0208927, -0.0018374, 0.0209105, -0.999781);
|
|
|
|
Unit3 actualAxis;
|
|
double actualAngle;
|
|
// convert Rot3 to quaternion using GTSAM
|
|
std::tie(actualAxis, actualAngle) = R1.axisAngle();
|
|
|
|
double expectedAngle = 3.1396582;
|
|
CHECK(assert_equal(expectedAngle, actualAngle, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, Rodrigues)
|
|
{
|
|
Rot3 R1 = Rot3::Rodrigues(epsilon, 0, 0);
|
|
Vector w = (Vector(3) << epsilon, 0., 0.).finished();
|
|
Rot3 R2 = slow_but_correct_Rodrigues(w);
|
|
CHECK(assert_equal(R2,R1));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, Rodrigues2)
|
|
{
|
|
Vector axis = Vector3(0., 1., 0.); // rotation around Y
|
|
double angle = 3.14 / 4.0;
|
|
Rot3 expected(0.707388, 0, 0.706825,
|
|
0, 1, 0,
|
|
-0.706825, 0, 0.707388);
|
|
Rot3 actual = Rot3::AxisAngle(axis, angle);
|
|
CHECK(assert_equal(expected,actual,1e-5));
|
|
Rot3 actual2 = Rot3::Rodrigues(angle*axis);
|
|
CHECK(assert_equal(expected,actual2,1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, Rodrigues3)
|
|
{
|
|
Vector w = Vector3(0.1, 0.2, 0.3);
|
|
Rot3 R1 = Rot3::AxisAngle(w / w.norm(), w.norm());
|
|
Rot3 R2 = slow_but_correct_Rodrigues(w);
|
|
CHECK(assert_equal(R2,R1));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, Rodrigues4)
|
|
{
|
|
Vector axis = Vector3(0., 0., 1.); // rotation around Z
|
|
double angle = M_PI/2.0;
|
|
Rot3 actual = Rot3::AxisAngle(axis, angle);
|
|
double c=cos(angle),s=sin(angle);
|
|
Rot3 expected(c,-s, 0,
|
|
s, c, 0,
|
|
0, 0, 1);
|
|
CHECK(assert_equal(expected,actual));
|
|
CHECK(assert_equal(slow_but_correct_Rodrigues(axis*angle),actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, retract)
|
|
{
|
|
Vector v = Z_3x1;
|
|
CHECK(assert_equal(R, R.retract(v)));
|
|
|
|
// // test Canonical coordinates
|
|
// Canonical<Rot3> chart;
|
|
// Vector v2 = chart.local(R);
|
|
// CHECK(assert_equal(R, chart.retract(v2)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, log) {
|
|
static const double PI = boost::math::constants::pi<double>();
|
|
Vector w;
|
|
Rot3 R;
|
|
|
|
#define CHECK_OMEGA(X, Y, Z) \
|
|
w = (Vector(3) << (X), (Y), (Z)).finished(); \
|
|
R = Rot3::Rodrigues(w); \
|
|
EXPECT(assert_equal(w, Rot3::Logmap(R), 1e-12));
|
|
|
|
// Check zero
|
|
CHECK_OMEGA(0, 0, 0)
|
|
|
|
// create a random direction:
|
|
double norm = sqrt(1.0 + 16.0 + 4.0);
|
|
double x = 1.0 / norm, y = 4.0 / norm, z = 2.0 / norm;
|
|
|
|
// Check very small rotation for Taylor expansion
|
|
// Note that tolerance above is 1e-12, so Taylor is pretty good !
|
|
double d = 0.0001;
|
|
CHECK_OMEGA(d, 0, 0)
|
|
CHECK_OMEGA(0, d, 0)
|
|
CHECK_OMEGA(0, 0, d)
|
|
CHECK_OMEGA(x * d, y * d, z * d)
|
|
|
|
// check normal rotation
|
|
d = 0.1;
|
|
CHECK_OMEGA(d, 0, 0)
|
|
CHECK_OMEGA(0, d, 0)
|
|
CHECK_OMEGA(0, 0, d)
|
|
CHECK_OMEGA(x * d, y * d, z * d)
|
|
|
|
// Check 180 degree rotations
|
|
CHECK_OMEGA(PI, 0, 0)
|
|
CHECK_OMEGA(0, PI, 0)
|
|
CHECK_OMEGA(0, 0, PI)
|
|
|
|
// Windows and Linux have flipped sign in quaternion mode
|
|
//#if !defined(__APPLE__) && defined(GTSAM_USE_QUATERNIONS)
|
|
w = (Vector(3) << x * PI, y * PI, z * PI).finished();
|
|
R = Rot3::Rodrigues(w);
|
|
EXPECT(assert_equal(Vector(-w), Rot3::Logmap(R), 1e-12));
|
|
//#else
|
|
// CHECK_OMEGA(x * PI, y * PI, z * PI)
|
|
//#endif
|
|
|
|
// Check 360 degree rotations
|
|
#define CHECK_OMEGA_ZERO(X, Y, Z) \
|
|
w = (Vector(3) << (X), (Y), (Z)).finished(); \
|
|
R = Rot3::Rodrigues(w); \
|
|
EXPECT(assert_equal((Vector)Z_3x1, Rot3::Logmap(R)));
|
|
|
|
CHECK_OMEGA_ZERO(2.0 * PI, 0, 0)
|
|
CHECK_OMEGA_ZERO(0, 2.0 * PI, 0)
|
|
CHECK_OMEGA_ZERO(0, 0, 2.0 * PI)
|
|
CHECK_OMEGA_ZERO(x * 2. * PI, y * 2. * PI, z * 2. * PI)
|
|
|
|
// Check problematic case from Lund dataset vercingetorix.g2o
|
|
// This is an almost rotation with determinant not *quite* 1.
|
|
Rot3 Rlund(-0.98582676, -0.03958746, -0.16303092, //
|
|
-0.03997006, -0.88835923, 0.45740671, //
|
|
-0.16293753, 0.45743998, 0.87418537);
|
|
|
|
// Rot3's Logmap returns different, but equivalent compacted
|
|
// axis-angle vectors depending on whether Rot3 is implemented
|
|
// by Quaternions or SO3.
|
|
#if defined(GTSAM_USE_QUATERNIONS)
|
|
// Quaternion bounds angle to [-pi, pi] resulting in ~179.9 degrees
|
|
EXPECT(assert_equal(Vector3(0.264451979, -0.742197651, -3.04098211),
|
|
(Vector)Rot3::Logmap(Rlund), 1e-8));
|
|
#else
|
|
// SO3 will be approximate because of the non-orthogonality
|
|
EXPECT(assert_equal(Vector3(0.264452, -0.742197708, -3.04098184),
|
|
(Vector)Rot3::Logmap(Rlund), 1e-8));
|
|
#endif
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, retract_localCoordinates)
|
|
{
|
|
Vector3 d12 = Vector3::Constant(0.1);
|
|
Rot3 R2 = R.retract(d12);
|
|
EXPECT(assert_equal(d12, R.localCoordinates(R2)));
|
|
}
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, expmap_logmap)
|
|
{
|
|
Vector d12 = Vector3::Constant(0.1);
|
|
Rot3 R2 = R.expmap(d12);
|
|
EXPECT(assert_equal(d12, R.logmap(R2)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, retract_localCoordinates2)
|
|
{
|
|
Rot3 t1 = R, t2 = R*R, origin;
|
|
Vector d12 = t1.localCoordinates(t2);
|
|
EXPECT(assert_equal(t2, t1.retract(d12)));
|
|
Vector d21 = t2.localCoordinates(t1);
|
|
EXPECT(assert_equal(t1, t2.retract(d21)));
|
|
EXPECT(assert_equal(d12, -d21));
|
|
}
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, manifold_expmap)
|
|
{
|
|
Rot3 gR1 = Rot3::Rodrigues(0.1, 0.4, 0.2);
|
|
Rot3 gR2 = Rot3::Rodrigues(0.3, 0.1, 0.7);
|
|
Rot3 origin;
|
|
|
|
// log behaves correctly
|
|
Vector d12 = Rot3::Logmap(gR1.between(gR2));
|
|
Vector d21 = Rot3::Logmap(gR2.between(gR1));
|
|
|
|
// Check expmap
|
|
CHECK(assert_equal(gR2, gR1*Rot3::Expmap(d12)));
|
|
CHECK(assert_equal(gR1, gR2*Rot3::Expmap(d21)));
|
|
|
|
// Check that log(t1,t2)=-log(t2,t1)
|
|
CHECK(assert_equal(d12,-d21));
|
|
|
|
// lines in canonical coordinates correspond to Abelian subgroups in SO(3)
|
|
Vector d = Vector3(0.1, 0.2, 0.3);
|
|
// exp(-d)=inverse(exp(d))
|
|
CHECK(assert_equal(Rot3::Expmap(-d),Rot3::Expmap(d).inverse()));
|
|
// exp(5d)=exp(2*d+3*d)=exp(2*d)exp(3*d)=exp(3*d)exp(2*d)
|
|
Rot3 R2 = Rot3::Expmap (2 * d);
|
|
Rot3 R3 = Rot3::Expmap (3 * d);
|
|
Rot3 R5 = Rot3::Expmap (5 * d);
|
|
CHECK(assert_equal(R5,R2*R3));
|
|
CHECK(assert_equal(R5,R3*R2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
class AngularVelocity : public Vector3 {
|
|
public:
|
|
template <typename Derived>
|
|
inline AngularVelocity(const Eigen::MatrixBase<Derived>& v)
|
|
: Vector3(v) {}
|
|
|
|
AngularVelocity(double wx, double wy, double wz) : Vector3(wx, wy, wz) {}
|
|
};
|
|
|
|
AngularVelocity bracket(const AngularVelocity& X, const AngularVelocity& Y) {
|
|
return X.cross(Y);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, BCH)
|
|
{
|
|
// Approximate exmap by BCH formula
|
|
AngularVelocity w1(0.2, -0.1, 0.1);
|
|
AngularVelocity w2(0.01, 0.02, -0.03);
|
|
Rot3 R1 = Rot3::Expmap (w1), R2 = Rot3::Expmap (w2);
|
|
Rot3 R3 = R1 * R2;
|
|
Vector expected = Rot3::Logmap(R3);
|
|
Vector actual = BCH(w1, w2);
|
|
CHECK(assert_equal(expected, actual,1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, rotate_derivatives)
|
|
{
|
|
Matrix actualDrotate1a, actualDrotate1b, actualDrotate2;
|
|
R.rotate(P, actualDrotate1a, actualDrotate2);
|
|
R.inverse().rotate(P, actualDrotate1b, boost::none);
|
|
Matrix numerical1 = numericalDerivative21(testing::rotate<Rot3,Point3>, R, P);
|
|
Matrix numerical2 = numericalDerivative21(testing::rotate<Rot3,Point3>, R.inverse(), P);
|
|
Matrix numerical3 = numericalDerivative22(testing::rotate<Rot3,Point3>, R, P);
|
|
EXPECT(assert_equal(numerical1,actualDrotate1a,error));
|
|
EXPECT(assert_equal(numerical2,actualDrotate1b,error));
|
|
EXPECT(assert_equal(numerical3,actualDrotate2, error));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, unrotate)
|
|
{
|
|
Point3 w = R * P;
|
|
Matrix H1,H2;
|
|
Point3 actual = R.unrotate(w,H1,H2);
|
|
CHECK(assert_equal(P,actual));
|
|
|
|
Matrix numerical1 = numericalDerivative21(testing::unrotate<Rot3,Point3>, R, w);
|
|
CHECK(assert_equal(numerical1,H1,error));
|
|
|
|
Matrix numerical2 = numericalDerivative22(testing::unrotate<Rot3,Point3>, R, w);
|
|
CHECK(assert_equal(numerical2,H2,error));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, compose )
|
|
{
|
|
Rot3 R1 = Rot3::Rodrigues(0.1, 0.2, 0.3);
|
|
Rot3 R2 = Rot3::Rodrigues(0.2, 0.3, 0.5);
|
|
|
|
Rot3 expected = R1 * R2;
|
|
Matrix actualH1, actualH2;
|
|
Rot3 actual = R1.compose(R2, actualH1, actualH2);
|
|
CHECK(assert_equal(expected,actual));
|
|
|
|
Matrix numericalH1 = numericalDerivative21(testing::compose<Rot3>, R1,
|
|
R2, 1e-2);
|
|
CHECK(assert_equal(numericalH1,actualH1));
|
|
|
|
Matrix numericalH2 = numericalDerivative22(testing::compose<Rot3>, R1,
|
|
R2, 1e-2);
|
|
CHECK(assert_equal(numericalH2,actualH2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, inverse )
|
|
{
|
|
Rot3 R = Rot3::Rodrigues(0.1, 0.2, 0.3);
|
|
|
|
Rot3 I;
|
|
Matrix3 actualH;
|
|
Rot3 actual = R.inverse(actualH);
|
|
CHECK(assert_equal(I,R*actual));
|
|
CHECK(assert_equal(I,actual*R));
|
|
CHECK(assert_equal(actual.matrix(), R.transpose()));
|
|
|
|
Matrix numericalH = numericalDerivative11(testing::inverse<Rot3>, R);
|
|
CHECK(assert_equal(numericalH,actualH));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, between )
|
|
{
|
|
Rot3 r1 = Rot3::Rz(M_PI/3.0);
|
|
Rot3 r2 = Rot3::Rz(2.0*M_PI/3.0);
|
|
|
|
Matrix expectedr1 = (Matrix(3, 3) <<
|
|
0.5, -sqrt(3.0)/2.0, 0.0,
|
|
sqrt(3.0)/2.0, 0.5, 0.0,
|
|
0.0, 0.0, 1.0).finished();
|
|
EXPECT(assert_equal(expectedr1, r1.matrix()));
|
|
|
|
Rot3 R = Rot3::Rodrigues(0.1, 0.4, 0.2);
|
|
Rot3 origin;
|
|
EXPECT(assert_equal(R, origin.between(R)));
|
|
EXPECT(assert_equal(R.inverse(), R.between(origin)));
|
|
|
|
Rot3 R1 = Rot3::Rodrigues(0.1, 0.2, 0.3);
|
|
Rot3 R2 = Rot3::Rodrigues(0.2, 0.3, 0.5);
|
|
|
|
Rot3 expected = R1.inverse() * R2;
|
|
Matrix actualH1, actualH2;
|
|
Rot3 actual = R1.between(R2, actualH1, actualH2);
|
|
EXPECT(assert_equal(expected,actual));
|
|
|
|
Matrix numericalH1 = numericalDerivative21(testing::between<Rot3> , R1, R2);
|
|
CHECK(assert_equal(numericalH1,actualH1));
|
|
|
|
Matrix numericalH2 = numericalDerivative22(testing::between<Rot3> , R1, R2);
|
|
CHECK(assert_equal(numericalH2,actualH2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, xyz )
|
|
{
|
|
double t = 0.1, st = sin(t), ct = cos(t);
|
|
|
|
// Make sure all counterclockwise
|
|
// Diagrams below are all from from unchanging axis
|
|
|
|
// z
|
|
// | * Y=(ct,st)
|
|
// x----y
|
|
Rot3 expected1(1, 0, 0, 0, ct, -st, 0, st, ct);
|
|
CHECK(assert_equal(expected1,Rot3::Rx(t)));
|
|
|
|
// x
|
|
// | * Z=(ct,st)
|
|
// y----z
|
|
Rot3 expected2(ct, 0, st, 0, 1, 0, -st, 0, ct);
|
|
CHECK(assert_equal(expected2,Rot3::Ry(t)));
|
|
|
|
// y
|
|
// | X=* (ct,st)
|
|
// z----x
|
|
Rot3 expected3(ct, -st, 0, st, ct, 0, 0, 0, 1);
|
|
CHECK(assert_equal(expected3,Rot3::Rz(t)));
|
|
|
|
// Check compound rotation
|
|
Rot3 expected = Rot3::Rz(0.3) * Rot3::Ry(0.2) * Rot3::Rx(0.1);
|
|
CHECK(assert_equal(expected,Rot3::RzRyRx(0.1,0.2,0.3)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, yaw_pitch_roll )
|
|
{
|
|
double t = 0.1;
|
|
|
|
// yaw is around z axis
|
|
CHECK(assert_equal(Rot3::Rz(t),Rot3::Yaw(t)));
|
|
|
|
// pitch is around y axis
|
|
CHECK(assert_equal(Rot3::Ry(t),Rot3::Pitch(t)));
|
|
|
|
// roll is around x axis
|
|
CHECK(assert_equal(Rot3::Rx(t),Rot3::Roll(t)));
|
|
|
|
// Check compound rotation
|
|
Rot3 expected = Rot3::Yaw(0.1) * Rot3::Pitch(0.2) * Rot3::Roll(0.3);
|
|
CHECK(assert_equal(expected,Rot3::Ypr(0.1,0.2,0.3)));
|
|
|
|
CHECK(assert_equal((Vector)Vector3(0.1, 0.2, 0.3),expected.ypr()));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, RQ)
|
|
{
|
|
// Try RQ on a pure rotation
|
|
Matrix actualK;
|
|
Vector actual;
|
|
boost::tie(actualK, actual) = RQ(R.matrix());
|
|
Vector expected = Vector3(0.14715, 0.385821, 0.231671);
|
|
CHECK(assert_equal(I_3x3,actualK));
|
|
CHECK(assert_equal(expected,actual,1e-6));
|
|
|
|
// Try using xyz call, asserting that Rot3::RzRyRx(x,y,z).xyz()==[x;y;z]
|
|
CHECK(assert_equal(expected,R.xyz(),1e-6));
|
|
CHECK(assert_equal((Vector)Vector3(0.1,0.2,0.3),Rot3::RzRyRx(0.1,0.2,0.3).xyz()));
|
|
|
|
// Try using ypr call, asserting that Rot3::Ypr(y,p,r).ypr()==[y;p;r]
|
|
CHECK(assert_equal((Vector)Vector3(0.1,0.2,0.3),Rot3::Ypr(0.1,0.2,0.3).ypr()));
|
|
CHECK(assert_equal((Vector)Vector3(0.3,0.2,0.1),Rot3::Ypr(0.1,0.2,0.3).rpy()));
|
|
|
|
// Try ypr for pure yaw-pitch-roll matrices
|
|
CHECK(assert_equal((Vector)Vector3(0.1,0.0,0.0),Rot3::Yaw (0.1).ypr()));
|
|
CHECK(assert_equal((Vector)Vector3(0.0,0.1,0.0),Rot3::Pitch(0.1).ypr()));
|
|
CHECK(assert_equal((Vector)Vector3(0.0,0.0,0.1),Rot3::Roll (0.1).ypr()));
|
|
|
|
// Try RQ to recover calibration from 3*3 sub-block of projection matrix
|
|
Matrix K = (Matrix(3, 3) << 500.0, 0.0, 320.0, 0.0, 500.0, 240.0, 0.0, 0.0, 1.0).finished();
|
|
Matrix A = K * R.matrix();
|
|
boost::tie(actualK, actual) = RQ(A);
|
|
CHECK(assert_equal(K,actualK));
|
|
CHECK(assert_equal(expected,actual,1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, expmapStability ) {
|
|
Vector w = Vector3(78e-9, 5e-8, 97e-7);
|
|
double theta = w.norm();
|
|
double theta2 = theta*theta;
|
|
Rot3 actualR = Rot3::Expmap(w);
|
|
Matrix W = (Matrix(3, 3) << 0.0, -w(2), w(1),
|
|
w(2), 0.0, -w(0),
|
|
-w(1), w(0), 0.0 ).finished();
|
|
Matrix W2 = W*W;
|
|
Matrix Rmat = I_3x3 + (1.0-theta2/6.0 + theta2*theta2/120.0
|
|
- theta2*theta2*theta2/5040.0)*W + (0.5 - theta2/24.0 + theta2*theta2/720.0)*W2 ;
|
|
Rot3 expectedR( Rmat );
|
|
CHECK(assert_equal(expectedR, actualR, 1e-10));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, logmapStability ) {
|
|
Vector w = Vector3(1e-8, 0.0, 0.0);
|
|
Rot3 R = Rot3::Expmap(w);
|
|
// double tr = R.r1().x()+R.r2().y()+R.r3().z();
|
|
// std::cout.precision(5000);
|
|
// std::cout << "theta: " << w.norm() << std::endl;
|
|
// std::cout << "trace: " << tr << std::endl;
|
|
// R.print("R = ");
|
|
Vector actualw = Rot3::Logmap(R);
|
|
CHECK(assert_equal(w, actualw, 1e-15));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, quaternion) {
|
|
// NOTE: This is also verifying the ability to convert Vector to Quaternion
|
|
Quaternion q1(0.710997408193224, 0.360544029310185, 0.594459869568306, 0.105395217842782);
|
|
Rot3 R1(0.271018623057411, 0.278786459830371, 0.921318086098018,
|
|
0.578529366719085, 0.717799701969298, -0.387385285854279,
|
|
-0.769319620053772, 0.637998195662053, 0.033250932803219);
|
|
|
|
Quaternion q2(0.263360579192421, 0.571813128030932, 0.494678363680335,
|
|
0.599136268678053);
|
|
Rot3 R2(-0.207341903877828, 0.250149415542075, 0.945745528564780,
|
|
0.881304914479026, -0.371869043667957, 0.291573424846290,
|
|
0.424630407073532, 0.893945571198514, -0.143353873763946);
|
|
|
|
// Check creating Rot3 from quaternion
|
|
EXPECT(assert_equal(R1, Rot3(q1)));
|
|
EXPECT(assert_equal(R1, Rot3::Quaternion(q1.w(), q1.x(), q1.y(), q1.z())));
|
|
EXPECT(assert_equal(R2, Rot3(q2)));
|
|
EXPECT(assert_equal(R2, Rot3::Quaternion(q2.w(), q2.x(), q2.y(), q2.z())));
|
|
|
|
// Check converting Rot3 to quaterion
|
|
EXPECT(assert_equal(Vector(R1.toQuaternion().coeffs()), Vector(q1.coeffs())));
|
|
EXPECT(assert_equal(Vector(R2.toQuaternion().coeffs()), Vector(q2.coeffs())));
|
|
|
|
// Check that quaternion and Rot3 represent the same rotation
|
|
Point3 p1(1.0, 2.0, 3.0);
|
|
Point3 p2(8.0, 7.0, 9.0);
|
|
|
|
Point3 expected1 = R1*p1;
|
|
Point3 expected2 = R2*p2;
|
|
|
|
Point3 actual1 = Point3(q1*p1);
|
|
Point3 actual2 = Point3(q2*p2);
|
|
|
|
EXPECT(assert_equal(expected1, actual1));
|
|
EXPECT(assert_equal(expected2, actual2));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Matrix Cayley(const Matrix& A) {
|
|
Matrix::Index n = A.cols();
|
|
const Matrix I = Matrix::Identity(n,n);
|
|
return (I-A)*(I+A).inverse();
|
|
}
|
|
|
|
TEST( Rot3, Cayley ) {
|
|
Matrix A = skewSymmetric(1,2,-3);
|
|
Matrix Q = Cayley(A);
|
|
EXPECT(assert_equal((Matrix)I_3x3, trans(Q)*Q));
|
|
EXPECT(assert_equal(A, Cayley(Q)));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, stream)
|
|
{
|
|
Rot3 R;
|
|
std::ostringstream os;
|
|
os << R;
|
|
string expected = "[\n\t1, 0, 0;\n\t0, 1, 0;\n\t0, 0, 1\n]";
|
|
EXPECT(os.str() == expected);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( Rot3, slerp)
|
|
{
|
|
// A first simple test
|
|
Rot3 R1 = Rot3::Rz(1), R2 = Rot3::Rz(2), R3 = Rot3::Rz(1.5);
|
|
EXPECT(assert_equal(R1, R1.slerp(0.0,R2)));
|
|
EXPECT(assert_equal(R2, R1.slerp(1.0,R2)));
|
|
EXPECT(assert_equal(R3, R1.slerp(0.5,R2)));
|
|
// Make sure other can be *this
|
|
EXPECT(assert_equal(R1, R1.slerp(0.5,R1)));
|
|
}
|
|
|
|
//******************************************************************************
|
|
namespace {
|
|
Rot3 id;
|
|
Rot3 T1(Rot3::AxisAngle(Vector3(0, 0, 1), 1));
|
|
Rot3 T2(Rot3::AxisAngle(Vector3(0, 1, 0), 2));
|
|
} // namespace
|
|
|
|
//******************************************************************************
|
|
TEST(Rot3, Invariants) {
|
|
EXPECT(check_group_invariants(id, id));
|
|
EXPECT(check_group_invariants(id, T1));
|
|
EXPECT(check_group_invariants(T2, id));
|
|
EXPECT(check_group_invariants(T2, T1));
|
|
EXPECT(check_group_invariants(T1, T2));
|
|
|
|
EXPECT(check_manifold_invariants(id, id));
|
|
EXPECT(check_manifold_invariants(id, T1));
|
|
EXPECT(check_manifold_invariants(T2, id));
|
|
EXPECT(check_manifold_invariants(T2, T1));
|
|
EXPECT(check_manifold_invariants(T1, T2));
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(Rot3, LieGroupDerivatives) {
|
|
CHECK_LIE_GROUP_DERIVATIVES(id, id);
|
|
CHECK_LIE_GROUP_DERIVATIVES(id, T2);
|
|
CHECK_LIE_GROUP_DERIVATIVES(T2, id);
|
|
CHECK_LIE_GROUP_DERIVATIVES(T1, T2);
|
|
CHECK_LIE_GROUP_DERIVATIVES(T2, T1);
|
|
}
|
|
|
|
//******************************************************************************
|
|
TEST(Rot3, ChartDerivatives) {
|
|
if (ROT3_DEFAULT_COORDINATES_MODE == Rot3::EXPMAP) {
|
|
CHECK_CHART_DERIVATIVES(id, id);
|
|
CHECK_CHART_DERIVATIVES(id, T2);
|
|
CHECK_CHART_DERIVATIVES(T2, id);
|
|
CHECK_CHART_DERIVATIVES(T1, T2);
|
|
CHECK_CHART_DERIVATIVES(T2, T1);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, ClosestTo) {
|
|
Matrix3 M;
|
|
M << 0.79067393, 0.6051136, -0.0930814, //
|
|
0.4155925, -0.64214347, -0.64324489, //
|
|
-0.44948549, 0.47046326, -0.75917576;
|
|
|
|
Matrix expected(3, 3);
|
|
expected << 0.790687, 0.605096, -0.0931312, //
|
|
0.415746, -0.642355, -0.643844, //
|
|
-0.449411, 0.47036, -0.759468;
|
|
|
|
auto actual = Rot3::ClosestTo(3*M);
|
|
EXPECT(assert_equal(expected, actual.matrix(), 1e-6));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, axisAngle) {
|
|
Unit3 actualAxis;
|
|
double actualAngle;
|
|
|
|
// not a lambda as otherwise we can't trace error easily
|
|
#define CHECK_AXIS_ANGLE(expectedAxis, expectedAngle, rotation) \
|
|
std::tie(actualAxis, actualAngle) = rotation.axisAngle(); \
|
|
EXPECT(assert_equal(expectedAxis, actualAxis, 1e-9)); \
|
|
EXPECT_DOUBLES_EQUAL(expectedAngle, actualAngle, 1e-9); \
|
|
EXPECT(assert_equal(rotation, Rot3::AxisAngle(expectedAxis, expectedAngle)))
|
|
|
|
// CHECK R defined at top = Rot3::Rodrigues(0.1, 0.4, 0.2)
|
|
Vector3 omega(0.1, 0.4, 0.2);
|
|
Unit3 axis(omega), _axis(-omega);
|
|
CHECK_AXIS_ANGLE(axis, omega.norm(), R);
|
|
|
|
// rotate by 90
|
|
CHECK_AXIS_ANGLE(Unit3(1, 0, 0), M_PI_2, Rot3::Ypr(0, 0, M_PI_2))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 1, 0), M_PI_2, Rot3::Ypr(0, M_PI_2, 0))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 0, 1), M_PI_2, Rot3::Ypr(M_PI_2, 0, 0))
|
|
CHECK_AXIS_ANGLE(axis, M_PI_2, Rot3::AxisAngle(axis, M_PI_2))
|
|
|
|
// rotate by -90
|
|
CHECK_AXIS_ANGLE(Unit3(-1, 0, 0), M_PI_2, Rot3::Ypr(0, 0, -M_PI_2))
|
|
CHECK_AXIS_ANGLE(Unit3(0, -1, 0), M_PI_2, Rot3::Ypr(0, -M_PI_2, 0))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 0, -1), M_PI_2, Rot3::Ypr(-M_PI_2, 0, 0))
|
|
CHECK_AXIS_ANGLE(_axis, M_PI_2, Rot3::AxisAngle(axis, -M_PI_2))
|
|
|
|
// rotate by 270
|
|
const double theta270 = M_PI + M_PI / 2;
|
|
CHECK_AXIS_ANGLE(Unit3(-1, 0, 0), M_PI_2, Rot3::Ypr(0, 0, theta270))
|
|
CHECK_AXIS_ANGLE(Unit3(0, -1, 0), M_PI_2, Rot3::Ypr(0, theta270, 0))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 0, -1), M_PI_2, Rot3::Ypr(theta270, 0, 0))
|
|
CHECK_AXIS_ANGLE(_axis, M_PI_2, Rot3::AxisAngle(axis, theta270))
|
|
|
|
// rotate by -270
|
|
const double theta_270 = -(M_PI + M_PI / 2); // 90 (or -270) degrees
|
|
CHECK_AXIS_ANGLE(Unit3(1, 0, 0), M_PI_2, Rot3::Ypr(0, 0, theta_270))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 1, 0), M_PI_2, Rot3::Ypr(0, theta_270, 0))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 0, 1), M_PI_2, Rot3::Ypr(theta_270, 0, 0))
|
|
CHECK_AXIS_ANGLE(axis, M_PI_2, Rot3::AxisAngle(axis, theta_270))
|
|
|
|
const double theta195 = 195 * M_PI / 180;
|
|
const double theta165 = 165 * M_PI / 180;
|
|
|
|
/// Non-trivial angle 165
|
|
CHECK_AXIS_ANGLE(Unit3(1, 0, 0), theta165, Rot3::Ypr(0, 0, theta165))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 1, 0), theta165, Rot3::Ypr(0, theta165, 0))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 0, 1), theta165, Rot3::Ypr(theta165, 0, 0))
|
|
CHECK_AXIS_ANGLE(axis, theta165, Rot3::AxisAngle(axis, theta165))
|
|
|
|
/// Non-trivial angle 195
|
|
CHECK_AXIS_ANGLE(Unit3(-1, 0, 0), theta165, Rot3::Ypr(0, 0, theta195))
|
|
CHECK_AXIS_ANGLE(Unit3(0, -1, 0), theta165, Rot3::Ypr(0, theta195, 0))
|
|
CHECK_AXIS_ANGLE(Unit3(0, 0, -1), theta165, Rot3::Ypr(theta195, 0, 0))
|
|
CHECK_AXIS_ANGLE(_axis, theta165, Rot3::AxisAngle(axis, theta195))
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 RzRyRx_proxy(double const& a, double const& b, double const& c) {
|
|
return Rot3::RzRyRx(a, b, c);
|
|
}
|
|
|
|
TEST(Rot3, RzRyRx_scalars_derivative) {
|
|
const auto x = 0.1, y = 0.4, z = 0.2;
|
|
const auto num_x = numericalDerivative31(RzRyRx_proxy, x, y, z);
|
|
const auto num_y = numericalDerivative32(RzRyRx_proxy, x, y, z);
|
|
const auto num_z = numericalDerivative33(RzRyRx_proxy, x, y, z);
|
|
|
|
Vector3 act_x, act_y, act_z;
|
|
Rot3::RzRyRx(x, y, z, act_x, act_y, act_z);
|
|
|
|
CHECK(assert_equal(num_x, act_x));
|
|
CHECK(assert_equal(num_y, act_y));
|
|
CHECK(assert_equal(num_z, act_z));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 RzRyRx_proxy(Vector3 const& xyz) { return Rot3::RzRyRx(xyz); }
|
|
|
|
TEST(Rot3, RzRyRx_vector_derivative) {
|
|
const auto xyz = Vector3{-0.3, 0.1, 0.7};
|
|
const auto num = numericalDerivative11(RzRyRx_proxy, xyz);
|
|
|
|
Matrix3 act;
|
|
Rot3::RzRyRx(xyz, act);
|
|
|
|
CHECK(assert_equal(num, act));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Rot3 Ypr_proxy(double const& y, double const& p, double const& r) {
|
|
return Rot3::Ypr(y, p, r);
|
|
}
|
|
|
|
TEST(Rot3, Ypr_derivative) {
|
|
const auto y = 0.7, p = -0.3, r = 0.1;
|
|
const auto num_y = numericalDerivative31(Ypr_proxy, y, p, r);
|
|
const auto num_p = numericalDerivative32(Ypr_proxy, y, p, r);
|
|
const auto num_r = numericalDerivative33(Ypr_proxy, y, p, r);
|
|
|
|
Vector3 act_y, act_p, act_r;
|
|
Rot3::Ypr(y, p, r, act_y, act_p, act_r);
|
|
|
|
CHECK(assert_equal(num_y, act_y));
|
|
CHECK(assert_equal(num_p, act_p));
|
|
CHECK(assert_equal(num_r, act_r));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector3 RQ_proxy(Matrix3 const& R) {
|
|
const auto RQ_ypr = RQ(R);
|
|
return RQ_ypr.second;
|
|
}
|
|
|
|
TEST(Rot3, RQ_derivative) {
|
|
using VecAndErr = std::pair<Vector3, double>;
|
|
std::vector<VecAndErr> test_xyz;
|
|
// Test zeros and a couple of random values
|
|
test_xyz.push_back(VecAndErr{{0, 0, 0}, error});
|
|
test_xyz.push_back(VecAndErr{{0, 0.5, -0.5}, error});
|
|
test_xyz.push_back(VecAndErr{{0.3, 0, 0.2}, error});
|
|
test_xyz.push_back(VecAndErr{{-0.6, 1.3, 0}, 1e-8});
|
|
test_xyz.push_back(VecAndErr{{1.0, 0.7, 0.8}, error});
|
|
test_xyz.push_back(VecAndErr{{3.0, 0.7, -0.6}, error});
|
|
test_xyz.push_back(VecAndErr{{M_PI / 2, 0, 0}, error});
|
|
test_xyz.push_back(VecAndErr{{0, 0, M_PI / 2}, error});
|
|
|
|
// Test close to singularity
|
|
test_xyz.push_back(VecAndErr{{0, M_PI / 2 - 1e-1, 0}, 1e-7});
|
|
test_xyz.push_back(VecAndErr{{0, 3 * M_PI / 2 + 1e-1, 0}, 1e-7});
|
|
test_xyz.push_back(VecAndErr{{0, M_PI / 2 - 1.1e-2, 0}, 1e-4});
|
|
test_xyz.push_back(VecAndErr{{0, 3 * M_PI / 2 + 1.1e-2, 0}, 1e-4});
|
|
|
|
for (auto const& vec_err : test_xyz) {
|
|
auto const& xyz = vec_err.first;
|
|
|
|
const auto R = Rot3::RzRyRx(xyz).matrix();
|
|
const auto num = numericalDerivative11(RQ_proxy, R);
|
|
Matrix39 calc;
|
|
RQ(R, calc);
|
|
|
|
const auto err = vec_err.second;
|
|
CHECK(assert_equal(num, calc, err));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector3 xyz_proxy(Rot3 const& R) { return R.xyz(); }
|
|
|
|
TEST(Rot3, xyz_derivative) {
|
|
const auto aa = Vector3{-0.6, 0.3, 0.2};
|
|
const auto R = Rot3::Expmap(aa);
|
|
const auto num = numericalDerivative11(xyz_proxy, R);
|
|
Matrix3 calc;
|
|
R.xyz(calc);
|
|
|
|
CHECK(assert_equal(num, calc));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector3 ypr_proxy(Rot3 const& R) { return R.ypr(); }
|
|
|
|
TEST(Rot3, ypr_derivative) {
|
|
const auto aa = Vector3{0.1, -0.3, -0.2};
|
|
const auto R = Rot3::Expmap(aa);
|
|
const auto num = numericalDerivative11(ypr_proxy, R);
|
|
Matrix3 calc;
|
|
R.ypr(calc);
|
|
|
|
CHECK(assert_equal(num, calc));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
Vector3 rpy_proxy(Rot3 const& R) { return R.rpy(); }
|
|
|
|
TEST(Rot3, rpy_derivative) {
|
|
const auto aa = Vector3{1.2, 0.3, -0.9};
|
|
const auto R = Rot3::Expmap(aa);
|
|
const auto num = numericalDerivative11(rpy_proxy, R);
|
|
Matrix3 calc;
|
|
R.rpy(calc);
|
|
|
|
CHECK(assert_equal(num, calc));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double roll_proxy(Rot3 const& R) { return R.roll(); }
|
|
|
|
TEST(Rot3, roll_derivative) {
|
|
const auto aa = Vector3{0.8, -0.8, 0.8};
|
|
const auto R = Rot3::Expmap(aa);
|
|
const auto num = numericalDerivative11(roll_proxy, R);
|
|
Matrix13 calc;
|
|
R.roll(calc);
|
|
|
|
CHECK(assert_equal(num, calc));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double pitch_proxy(Rot3 const& R) { return R.pitch(); }
|
|
|
|
TEST(Rot3, pitch_derivative) {
|
|
const auto aa = Vector3{0.01, 0.1, 0.0};
|
|
const auto R = Rot3::Expmap(aa);
|
|
const auto num = numericalDerivative11(pitch_proxy, R);
|
|
Matrix13 calc;
|
|
R.pitch(calc);
|
|
|
|
CHECK(assert_equal(num, calc));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double yaw_proxy(Rot3 const& R) { return R.yaw(); }
|
|
|
|
TEST(Rot3, yaw_derivative) {
|
|
const auto aa = Vector3{0.0, 0.1, 0.6};
|
|
const auto R = Rot3::Expmap(aa);
|
|
const auto num = numericalDerivative11(yaw_proxy, R);
|
|
Matrix13 calc;
|
|
R.yaw(calc);
|
|
|
|
CHECK(assert_equal(num, calc));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(Rot3, determinant) {
|
|
size_t degree = 1;
|
|
Rot3 R_w0; // Zero rotation
|
|
Rot3 R_w1 = Rot3::Ry(degree * M_PI / 180);
|
|
|
|
Rot3 R_01, R_w2;
|
|
double actual, expected = 1.0;
|
|
|
|
for (size_t i = 2; i < 360; ++i) {
|
|
R_01 = R_w0.between(R_w1);
|
|
R_w2 = R_w1 * R_01;
|
|
R_w0 = R_w1;
|
|
R_w1 = R_w2.normalized();
|
|
actual = R_w2.matrix().determinant();
|
|
|
|
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-7);
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|