1393 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1393 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  testSmartProjectionPoseFactorRollingShutter.cpp
 | |
|  *  @brief Unit tests for SmartProjectionPoseFactorRollingShutter Class
 | |
|  *  @author Luca Carlone
 | |
|  *  @date   July 2021
 | |
|  */
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <gtsam/base/numericalDerivative.h>
 | |
| #include <gtsam/base/serializationTestHelpers.h>
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/slam/PoseTranslationPrior.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <gtsam_unstable/slam/ProjectionFactorRollingShutter.h>
 | |
| #include <gtsam_unstable/slam/SmartProjectionPoseFactorRollingShutter.h>
 | |
| 
 | |
| #include <boost/assign/std/map.hpp>
 | |
| #include <iostream>
 | |
| 
 | |
| #include "gtsam/slam/tests/smartFactorScenarios.h"
 | |
| #define DISABLE_TIMING
 | |
| 
 | |
| using namespace gtsam;
 | |
| using namespace boost::assign;
 | |
| using namespace std::placeholders;
 | |
| 
 | |
| static const double rankTol = 1.0;
 | |
| // Create a noise model for the pixel error
 | |
| static const double sigma = 0.1;
 | |
| static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::L;
 | |
| using symbol_shorthand::X;
 | |
| 
 | |
| // tests data
 | |
| static Symbol x1('X', 1);
 | |
| static Symbol x2('X', 2);
 | |
| static Symbol x3('X', 3);
 | |
| static Symbol x4('X', 4);
 | |
| static Symbol l0('L', 0);
 | |
| static Pose3 body_P_sensor =
 | |
|     Pose3(Rot3::Ypr(-0.1, 0.2, -0.2), Point3(0.1, 0.0, 0.0));
 | |
| 
 | |
| static Point2 measurement1(323.0, 240.0);
 | |
| static Point2 measurement2(200.0, 220.0);
 | |
| static Point2 measurement3(320.0, 10.0);
 | |
| static double interp_factor = 0.5;
 | |
| static double interp_factor1 = 0.3;
 | |
| static double interp_factor2 = 0.4;
 | |
| static double interp_factor3 = 0.5;
 | |
| 
 | |
| static size_t cameraId1 = 0;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // default Cal3_S2 poses with rolling shutter effect
 | |
| namespace vanillaPoseRS {
 | |
| typedef PinholePose<Cal3_S2> Camera;
 | |
| typedef CameraSet<Camera> Cameras;
 | |
| static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
 | |
| Pose3 interp_pose1 = interpolate<Pose3>(level_pose, pose_right, interp_factor1);
 | |
| Pose3 interp_pose2 = interpolate<Pose3>(pose_right, pose_above, interp_factor2);
 | |
| Pose3 interp_pose3 = interpolate<Pose3>(pose_above, level_pose, interp_factor3);
 | |
| Camera cam1(interp_pose1, sharedK);
 | |
| Camera cam2(interp_pose2, sharedK);
 | |
| Camera cam3(interp_pose3, sharedK);
 | |
| SmartProjectionParams params(
 | |
|     gtsam::HESSIAN,
 | |
|     gtsam::ZERO_ON_DEGENERACY);  // only config that works with RS factors
 | |
| }  // namespace vanillaPoseRS
 | |
| 
 | |
| LevenbergMarquardtParams lmParams;
 | |
| typedef SmartProjectionPoseFactorRollingShutter<PinholePose<Cal3_S2>>
 | |
|     SmartFactorRS;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
|   SmartFactorRS::shared_ptr factor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
|   params.setRankTolerance(rankTol);
 | |
|   SmartFactorRS factor1(model, cameraRig, params);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, add) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
|   SmartFactorRS::shared_ptr factor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   factor1->add(measurement1, x1, x2, interp_factor);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, Equals) {
 | |
|   using namespace vanillaPoseRS;
 | |
| 
 | |
|   // create fake measurements
 | |
|   Point2Vector measurements;
 | |
|   measurements.push_back(measurement1);
 | |
|   measurements.push_back(measurement2);
 | |
|   measurements.push_back(measurement3);
 | |
| 
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x4));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   FastVector<size_t> cameraIds{0, 0, 0};
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(body_P_sensor, sharedK));
 | |
| 
 | |
|   // create by adding a batch of measurements with a bunch of calibrations
 | |
|   SmartFactorRS::shared_ptr factor2(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   factor2->add(measurements, key_pairs, interp_factors, cameraIds);
 | |
| 
 | |
|   // create by adding a batch of measurements with a single calibrations
 | |
|   SmartFactorRS::shared_ptr factor3(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   factor3->add(measurements, key_pairs, interp_factors, cameraIds);
 | |
| 
 | |
|   {  // create equal factors and show equal returns true
 | |
|     SmartFactorRS::shared_ptr factor1(
 | |
|         new SmartFactorRS(model, cameraRig, params));
 | |
|     factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
 | |
|     factor1->add(measurement2, x2, x3, interp_factor2, cameraId1);
 | |
|     factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
 | |
| 
 | |
|     EXPECT(factor1->equals(*factor2));
 | |
|     EXPECT(factor1->equals(*factor3));
 | |
|   }
 | |
|   {  // create equal factors and show equal returns true (use default cameraId)
 | |
|     SmartFactorRS::shared_ptr factor1(
 | |
|         new SmartFactorRS(model, cameraRig, params));
 | |
|     factor1->add(measurement1, x1, x2, interp_factor1);
 | |
|     factor1->add(measurement2, x2, x3, interp_factor2);
 | |
|     factor1->add(measurement3, x3, x4, interp_factor3);
 | |
| 
 | |
|     EXPECT(factor1->equals(*factor2));
 | |
|     EXPECT(factor1->equals(*factor3));
 | |
|   }
 | |
|   {  // create equal factors and show equal returns true (use default cameraId)
 | |
|     SmartFactorRS::shared_ptr factor1(
 | |
|         new SmartFactorRS(model, cameraRig, params));
 | |
|     factor1->add(measurements, key_pairs, interp_factors);
 | |
| 
 | |
|     EXPECT(factor1->equals(*factor2));
 | |
|     EXPECT(factor1->equals(*factor3));
 | |
|   }
 | |
|   {  // create slightly different factors (different keys) and show equal
 | |
|      // returns false (use default cameraIds)
 | |
|     SmartFactorRS::shared_ptr factor1(
 | |
|         new SmartFactorRS(model, cameraRig, params));
 | |
|     factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
 | |
|     factor1->add(measurement2, x2, x2, interp_factor2,
 | |
|                  cameraId1);  // different!
 | |
|     factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
 | |
| 
 | |
|     EXPECT(!factor1->equals(*factor2));
 | |
|     EXPECT(!factor1->equals(*factor3));
 | |
|   }
 | |
|   {  // create slightly different factors (different extrinsics) and show equal
 | |
|      // returns false
 | |
|     boost::shared_ptr<Cameras> cameraRig2(new Cameras());
 | |
|     cameraRig2->push_back(Camera(body_P_sensor * body_P_sensor, sharedK));
 | |
|     SmartFactorRS::shared_ptr factor1(
 | |
|         new SmartFactorRS(model, cameraRig2, params));
 | |
|     factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
 | |
|     factor1->add(measurement2, x2, x3, interp_factor2,
 | |
|                  cameraId1);  // different!
 | |
|     factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
 | |
| 
 | |
|     EXPECT(!factor1->equals(*factor2));
 | |
|     EXPECT(!factor1->equals(*factor3));
 | |
|   }
 | |
|   {  // create slightly different factors (different interp factors) and show
 | |
|      // equal returns false
 | |
|     SmartFactorRS::shared_ptr factor1(
 | |
|         new SmartFactorRS(model, cameraRig, params));
 | |
|     factor1->add(measurement1, x1, x2, interp_factor1, cameraId1);
 | |
|     factor1->add(measurement2, x2, x3, interp_factor1,
 | |
|                  cameraId1);  // different!
 | |
|     factor1->add(measurement3, x3, x4, interp_factor3, cameraId1);
 | |
| 
 | |
|     EXPECT(!factor1->equals(*factor2));
 | |
|     EXPECT(!factor1->equals(*factor3));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const int DimBlock = 12;  ///< size of the variable stacking 2 poses from
 | |
|                                  ///< which the observation pose is interpolated
 | |
| static const int ZDim = 2;       ///< Measurement dimension (Point2)
 | |
| typedef Eigen::Matrix<double, ZDim, DimBlock>
 | |
|     MatrixZD;  // F blocks (derivatives wrt camera)
 | |
| typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD>>
 | |
|     FBlocks;  // vector of F blocks
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians) {
 | |
|   using namespace vanillaPoseRS;
 | |
| 
 | |
|   // Project two landmarks into two cameras
 | |
|   Point2 level_uv = cam1.project(landmark1);
 | |
|   Point2 level_uv_right = cam2.project(landmark1);
 | |
|   Pose3 body_P_sensorId = Pose3::identity();
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(body_P_sensorId, sharedK));
 | |
| 
 | |
|   SmartFactorRS factor(model, cameraRig, params);
 | |
|   factor.add(level_uv, x1, x2, interp_factor1);
 | |
|   factor.add(level_uv_right, x2, x3, interp_factor2);
 | |
| 
 | |
|   Values values;  // it's a pose factor, hence these are poses
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   values.insert(x3, pose_above);
 | |
| 
 | |
|   double actualError = factor.error(values);
 | |
|   double expectedError = 0.0;
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | |
| 
 | |
|   // Check triangulation
 | |
|   factor.triangulateSafe(factor.cameras(values));
 | |
|   TriangulationResult point = factor.point();
 | |
|   EXPECT(point.valid());  // check triangulated point is valid
 | |
|   EXPECT(assert_equal(
 | |
|       landmark1,
 | |
|       *point));  // check triangulation result matches expected 3D landmark
 | |
| 
 | |
|   // Check Jacobians
 | |
|   // -- actual Jacobians
 | |
|   FBlocks actualFs;
 | |
|   Matrix actualE;
 | |
|   Vector actualb;
 | |
|   factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb,
 | |
|                                                values);
 | |
|   EXPECT(actualE.rows() == 4);
 | |
|   EXPECT(actualE.cols() == 3);
 | |
|   EXPECT(actualb.rows() == 4);
 | |
|   EXPECT(actualb.cols() == 1);
 | |
|   EXPECT(actualFs.size() == 2);
 | |
| 
 | |
|   // -- expected Jacobians from ProjectionFactorsRollingShutter
 | |
|   ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1,
 | |
|                                          x2, l0, sharedK, body_P_sensorId);
 | |
|   Matrix expectedF11, expectedF12, expectedE1;
 | |
|   Vector expectedb1 = factor1.evaluateError(
 | |
|       level_pose, pose_right, landmark1, expectedF11, expectedF12, expectedE1);
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF11, Matrix(actualFs[0].block(0, 0, 2, 6)), 1e-5));
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF12, Matrix(actualFs[0].block(0, 6, 2, 6)), 1e-5));
 | |
|   EXPECT(assert_equal(expectedE1, Matrix(actualE.block(0, 0, 2, 3)), 1e-5));
 | |
|   // by definition computeJacobiansWithTriangulatedPoint returns minus
 | |
|   // reprojectionError
 | |
|   EXPECT(assert_equal(expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
 | |
| 
 | |
|   ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model,
 | |
|                                          x2, x3, l0, sharedK, body_P_sensorId);
 | |
|   Matrix expectedF21, expectedF22, expectedE2;
 | |
|   Vector expectedb2 = factor2.evaluateError(
 | |
|       pose_right, pose_above, landmark1, expectedF21, expectedF22, expectedE2);
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF21, Matrix(actualFs[1].block(0, 0, 2, 6)), 1e-5));
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF22, Matrix(actualFs[1].block(0, 6, 2, 6)), 1e-5));
 | |
|   EXPECT(assert_equal(expectedE2, Matrix(actualE.block(2, 0, 2, 3)), 1e-5));
 | |
|   // by definition computeJacobiansWithTriangulatedPoint returns minus
 | |
|   // reprojectionError
 | |
|   EXPECT(assert_equal(expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, noisyErrorAndJacobians) {
 | |
|   // also includes non-identical extrinsic calibration
 | |
|   using namespace vanillaPoseRS;
 | |
| 
 | |
|   // Project two landmarks into two cameras
 | |
|   Point2 pixelError(0.5, 1.0);
 | |
|   Point2 level_uv = cam1.project(landmark1) + pixelError;
 | |
|   Point2 level_uv_right = cam2.project(landmark1);
 | |
|   Pose3 body_P_sensorNonId = body_P_sensor;
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(body_P_sensorNonId, sharedK));
 | |
| 
 | |
|   SmartFactorRS factor(model, cameraRig, params);
 | |
|   factor.add(level_uv, x1, x2, interp_factor1);
 | |
|   factor.add(level_uv_right, x2, x3, interp_factor2);
 | |
| 
 | |
|   Values values;  // it's a pose factor, hence these are poses
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   values.insert(x3, pose_above);
 | |
| 
 | |
|   // Perform triangulation
 | |
|   factor.triangulateSafe(factor.cameras(values));
 | |
|   TriangulationResult point = factor.point();
 | |
|   EXPECT(point.valid());  // check triangulated point is valid
 | |
|   Point3 landmarkNoisy = *point;
 | |
| 
 | |
|   // Check Jacobians
 | |
|   // -- actual Jacobians
 | |
|   FBlocks actualFs;
 | |
|   Matrix actualE;
 | |
|   Vector actualb;
 | |
|   factor.computeJacobiansWithTriangulatedPoint(actualFs, actualE, actualb,
 | |
|                                                values);
 | |
|   EXPECT(actualE.rows() == 4);
 | |
|   EXPECT(actualE.cols() == 3);
 | |
|   EXPECT(actualb.rows() == 4);
 | |
|   EXPECT(actualb.cols() == 1);
 | |
|   EXPECT(actualFs.size() == 2);
 | |
| 
 | |
|   // -- expected Jacobians from ProjectionFactorsRollingShutter
 | |
|   ProjectionFactorRollingShutter factor1(level_uv, interp_factor1, model, x1,
 | |
|                                          x2, l0, sharedK, body_P_sensorNonId);
 | |
|   Matrix expectedF11, expectedF12, expectedE1;
 | |
|   Vector expectedb1 =
 | |
|       factor1.evaluateError(level_pose, pose_right, landmarkNoisy, expectedF11,
 | |
|                             expectedF12, expectedE1);
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF11, Matrix(actualFs[0].block(0, 0, 2, 6)), 1e-5));
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF12, Matrix(actualFs[0].block(0, 6, 2, 6)), 1e-5));
 | |
|   EXPECT(assert_equal(expectedE1, Matrix(actualE.block(0, 0, 2, 3)), 1e-5));
 | |
|   // by definition computeJacobiansWithTriangulatedPoint returns minus
 | |
|   // reprojectionError
 | |
|   EXPECT(assert_equal(expectedb1, -Vector(actualb.segment<2>(0)), 1e-5));
 | |
| 
 | |
|   ProjectionFactorRollingShutter factor2(level_uv_right, interp_factor2, model,
 | |
|                                          x2, x3, l0, sharedK,
 | |
|                                          body_P_sensorNonId);
 | |
|   Matrix expectedF21, expectedF22, expectedE2;
 | |
|   Vector expectedb2 =
 | |
|       factor2.evaluateError(pose_right, pose_above, landmarkNoisy, expectedF21,
 | |
|                             expectedF22, expectedE2);
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF21, Matrix(actualFs[1].block(0, 0, 2, 6)), 1e-5));
 | |
|   EXPECT(
 | |
|       assert_equal(expectedF22, Matrix(actualFs[1].block(0, 6, 2, 6)), 1e-5));
 | |
|   EXPECT(assert_equal(expectedE2, Matrix(actualE.block(2, 0, 2, 3)), 1e-5));
 | |
|   // by definition computeJacobiansWithTriangulatedPoint returns minus
 | |
|   // reprojectionError
 | |
|   EXPECT(assert_equal(expectedb2, -Vector(actualb.segment<2>(2)), 1e-5));
 | |
| 
 | |
|   // Check errors
 | |
|   double actualError = factor.error(values);  // from smart factor
 | |
|   NonlinearFactorGraph nfg;
 | |
|   nfg.add(factor1);
 | |
|   nfg.add(factor2);
 | |
|   values.insert(l0, landmarkNoisy);
 | |
|   double expectedError = nfg.error(values);
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor2(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor3(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.addPrior(x1, level_pose, noisePrior);
 | |
|   graph.addPrior(x2, pose_right, noisePrior);
 | |
| 
 | |
|   Values groundTruth;
 | |
|   groundTruth.insert(x1, level_pose);
 | |
|   groundTruth.insert(x2, pose_right);
 | |
|   groundTruth.insert(x3, pose_above);
 | |
|   DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
 | |
|   //  Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise, we expect it to move back to
 | |
|   // original pose_above
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
|   EXPECT(  // check that the pose is actually noisy
 | |
|       assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
 | |
|                               -0.0313952598, -0.000986635786, 0.0314107591,
 | |
|                               -0.999013364, -0.0313952598),
 | |
|                          Point3(0.1, -0.1, 1.9)),
 | |
|                    values.at<Pose3>(x3)));
 | |
| 
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(body_P_sensor, sharedK));
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {1, 1, 1});
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor2(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {1, 1, 1});
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor3(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {1, 1, 1});
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.addPrior(x1, level_pose, noisePrior);
 | |
|   graph.addPrior(x2, pose_right, noisePrior);
 | |
| 
 | |
|   Values groundTruth;
 | |
|   groundTruth.insert(x1, level_pose);
 | |
|   groundTruth.insert(x2, pose_right);
 | |
|   groundTruth.insert(x3, pose_above);  // pose above is the pose of the camera
 | |
|   DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
 | |
|   //  Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise, we expect it to move back to
 | |
|   // original pose_above
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
|   EXPECT(  // check that the pose is actually noisy
 | |
|       assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
 | |
|                               -0.0313952598, -0.000986635786, 0.0314107591,
 | |
|                               -0.999013364, -0.0313952598),
 | |
|                          Point3(0.1, -0.1, 1.9)),
 | |
|                    values.at<Pose3>(x3)));
 | |
| 
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam2) {
 | |
|   using namespace vanillaPoseRS;
 | |
| 
 | |
|   Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
 | |
| 
 | |
|   // create arbitrary body_T_sensor (transforms from sensor to body)
 | |
|   Pose3 body_T_sensor1 = Pose3(Rot3::Ypr(-0.03, 0., 0.01), Point3(1, 1, 1));
 | |
|   Pose3 body_T_sensor2 = Pose3(Rot3::Ypr(-0.1, 0., 0.05), Point3(0, 0, 1));
 | |
|   Pose3 body_T_sensor3 = Pose3(Rot3::Ypr(-0.3, 0., -0.05), Point3(0, 1, 1));
 | |
| 
 | |
|   Camera camera1(interp_pose1 * body_T_sensor1, sharedK);
 | |
|   Camera camera2(interp_pose2 * body_T_sensor2, sharedK);
 | |
|   Camera camera3(interp_pose3 * body_T_sensor3, sharedK);
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(camera1, camera2, camera3, landmark1,
 | |
|                            measurements_lmk1);
 | |
|   projectToMultipleCameras(camera1, camera2, camera3, landmark2,
 | |
|                            measurements_lmk2);
 | |
|   projectToMultipleCameras(camera1, camera2, camera3, landmark3,
 | |
|                            measurements_lmk3);
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(body_T_sensor1, sharedK));
 | |
|   cameraRig->push_back(Camera(body_T_sensor2, sharedK));
 | |
|   cameraRig->push_back(Camera(body_T_sensor3, sharedK));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor1->add(measurements_lmk1, key_pairs, interp_factors, {0, 1, 2});
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor2(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor2->add(measurements_lmk2, key_pairs, interp_factors, {0, 1, 2});
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor3(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor3->add(measurements_lmk3, key_pairs, interp_factors, {0, 1, 2});
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.addPrior(x1, level_pose, noisePrior);
 | |
|   graph.addPrior(x2, pose_right, noisePrior);
 | |
| 
 | |
|   Values groundTruth;
 | |
|   groundTruth.insert(x1, level_pose);
 | |
|   groundTruth.insert(x2, pose_right);
 | |
|   groundTruth.insert(x3, pose_above);  // pose above is the pose of the camera
 | |
|   DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
 | |
|   //  Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise, we expect it to move back to
 | |
|   // original pose_above
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
|   EXPECT(  // check that the pose is actually noisy
 | |
|       assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
 | |
|                               -0.0313952598, -0.000986635786, 0.0314107591,
 | |
|                               -0.999013364, -0.0313952598),
 | |
|                          Point3(0.1, -0.1, 1.9)),
 | |
|                    values.at<Pose3>(x3)));
 | |
| 
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-4));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
 | |
|   // here we replicate a test in SmartProjectionPoseFactor by setting
 | |
|   // interpolation factors to 0 and 1 (such that the rollingShutter measurements
 | |
|   // falls back to standard pixel measurements) Note: this is a quite extreme
 | |
|   // test since in typical camera you would not have more than 1 measurement per
 | |
|   // landmark at each interpolated pose
 | |
|   using namespace vanillaPoseRS;
 | |
| 
 | |
|   // Default cameras for simple derivatives
 | |
|   static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
 | |
| 
 | |
|   Rot3 R = Rot3::identity();
 | |
|   Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
 | |
|   Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
 | |
|   Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
 | |
|   Pose3 body_P_sensorId = Pose3::identity();
 | |
| 
 | |
|   // one landmarks 1m in front of camera
 | |
|   Point3 landmark1(0, 0, 10);
 | |
| 
 | |
|   Point2Vector measurements_lmk1;
 | |
| 
 | |
|   // Project 2 landmarks into 2 cameras
 | |
|   measurements_lmk1.push_back(cam1.project(landmark1));
 | |
|   measurements_lmk1.push_back(cam2.project(landmark1));
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   double interp_factor = 0;  // equivalent to measurement taken at pose 1
 | |
|   smartFactor1->add(measurements_lmk1[0], x1, x2, interp_factor);
 | |
|   interp_factor = 1;  // equivalent to measurement taken at pose 2
 | |
|   smartFactor1->add(measurements_lmk1[1], x1, x2, interp_factor);
 | |
| 
 | |
|   SmartFactorRS::Cameras cameras;
 | |
|   cameras.push_back(cam1);
 | |
|   cameras.push_back(cam2);
 | |
| 
 | |
|   // Make sure triangulation works
 | |
|   EXPECT(smartFactor1->triangulateSafe(cameras));
 | |
|   EXPECT(!smartFactor1->isDegenerate());
 | |
|   EXPECT(!smartFactor1->isPointBehindCamera());
 | |
|   boost::optional<Point3> p = smartFactor1->point();
 | |
|   EXPECT(p);
 | |
|   EXPECT(assert_equal(landmark1, *p));
 | |
| 
 | |
|   VectorValues zeroDelta;
 | |
|   Vector6 delta;
 | |
|   delta.setZero();
 | |
|   zeroDelta.insert(x1, delta);
 | |
|   zeroDelta.insert(x2, delta);
 | |
| 
 | |
|   VectorValues perturbedDelta;
 | |
|   delta.setOnes();
 | |
|   perturbedDelta.insert(x1, delta);
 | |
|   perturbedDelta.insert(x2, delta);
 | |
|   double expectedError = 2500;
 | |
| 
 | |
|   // After eliminating the point, A1 and A2 contain 2-rank information on
 | |
|   // cameras:
 | |
|   Matrix16 A1, A2;
 | |
|   A1 << -10, 0, 0, 0, 1, 0;
 | |
|   A2 << 10, 0, 1, 0, -1, 0;
 | |
|   A1 *= 10. / sigma;
 | |
|   A2 *= 10. / sigma;
 | |
|   Matrix expectedInformation;  // filled below
 | |
| 
 | |
|   // createHessianFactor
 | |
|   Matrix66 G11 = 0.5 * A1.transpose() * A1;
 | |
|   Matrix66 G12 = 0.5 * A1.transpose() * A2;
 | |
|   Matrix66 G22 = 0.5 * A2.transpose() * A2;
 | |
| 
 | |
|   Vector6 g1;
 | |
|   g1.setZero();
 | |
|   Vector6 g2;
 | |
|   g2.setZero();
 | |
| 
 | |
|   double f = 0;
 | |
| 
 | |
|   RegularHessianFactor<6> expected(x1, x2, G11, G12, g1, G22, g2, f);
 | |
|   expectedInformation = expected.information();
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   boost::shared_ptr<RegularHessianFactor<6>> actual =
 | |
|       smartFactor1->createHessianFactor(values);
 | |
|   EXPECT(assert_equal(expectedInformation, actual->information(), 1e-6));
 | |
|   EXPECT(assert_equal(expected, *actual, 1e-6));
 | |
|   EXPECT_DOUBLES_EQUAL(0, actual->error(zeroDelta), 1e-6);
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actual->error(perturbedDelta), 1e-6);
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   double excludeLandmarksFutherThanDist = 1e10;  // very large
 | |
|   SmartProjectionParams params;
 | |
|   params.setRankTolerance(1.0);
 | |
|   params.setLinearizationMode(gtsam::HESSIAN);
 | |
|   params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
 | |
|   params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
 | |
|   params.setEnableEPI(true);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS smartFactor1(model, cameraRig, params);
 | |
|   smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS smartFactor2(model, cameraRig, params);
 | |
|   smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS smartFactor3(model, cameraRig, params);
 | |
|   smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.addPrior(x1, level_pose, noisePrior);
 | |
|   graph.addPrior(x2, pose_right, noisePrior);
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise, we expect it to move back to
 | |
|   // original pose_above
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
| 
 | |
|   // Optimization should correct 3rd pose
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter,
 | |
|      optimization_3poses_landmarkDistance) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   double excludeLandmarksFutherThanDist = 2;
 | |
|   SmartProjectionParams params;
 | |
|   params.setRankTolerance(1.0);
 | |
|   params.setLinearizationMode(gtsam::HESSIAN);
 | |
|   // params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY); // this would give an
 | |
|   // exception as expected
 | |
|   params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
 | |
|   params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
 | |
|   params.setEnableEPI(false);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS smartFactor1(model, cameraRig, params);
 | |
|   smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS smartFactor2(model, cameraRig, params);
 | |
|   smartFactor2.add(measurements_lmk2, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS smartFactor3(model, cameraRig, params);
 | |
|   smartFactor3.add(measurements_lmk3, key_pairs, interp_factors);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.addPrior(x1, level_pose, noisePrior);
 | |
|   graph.addPrior(x2, pose_right, noisePrior);
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise, we expect it to move back to
 | |
|   // original pose_above
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
| 
 | |
|   // All factors are disabled (due to the distance threshold) and pose should
 | |
|   // remain where it is
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(values.at<Pose3>(x3), result.at<Pose3>(x3)));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter,
 | |
|      optimization_3poses_dynamicOutlierRejection) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   // add fourth landmark
 | |
|   Point3 landmark4(5, -0.5, 1);
 | |
| 
 | |
|   Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3,
 | |
|       measurements_lmk4;
 | |
|   // Project 4 landmarks into cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_lmk4);
 | |
|   measurements_lmk4.at(0) =
 | |
|       measurements_lmk4.at(0) + Point2(10, 10);  // add outlier
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   double excludeLandmarksFutherThanDist = 1e10;
 | |
|   double dynamicOutlierRejectionThreshold =
 | |
|       3;  // max 3 pixel of average reprojection error
 | |
| 
 | |
|   SmartProjectionParams params;
 | |
|   params.setRankTolerance(1.0);
 | |
|   params.setLinearizationMode(gtsam::HESSIAN);
 | |
|   params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
 | |
|   params.setLandmarkDistanceThreshold(excludeLandmarksFutherThanDist);
 | |
|   params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
 | |
|   params.setEnableEPI(false);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor2(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor3(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor4(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor4->add(measurements_lmk4, key_pairs, interp_factors);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(smartFactor4);
 | |
|   graph.addPrior(x1, level_pose, noisePrior);
 | |
|   graph.addPrior(x2, pose_right, noisePrior);
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(
 | |
|       Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|       Point3(0.01, 0.01,
 | |
|              0.01));  // smaller noise, otherwise outlier rejection will kick in
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise, we expect it to move back to
 | |
|   // original pose_above
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
| 
 | |
|   // Optimization should correct 3rd pose
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter,
 | |
|      hessianComparedToProjFactorsRollingShutter) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   Point2Vector measurements_lmk1;
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor1->add(measurements_lmk1, key_pairs, interp_factors);
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise to get a nontrivial linearization
 | |
|   // point
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
|   EXPECT(  // check that the pose is actually noisy
 | |
|       assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
 | |
|                               -0.0313952598, -0.000986635786, 0.0314107591,
 | |
|                               -0.999013364, -0.0313952598),
 | |
|                          Point3(0.1, -0.1, 1.9)),
 | |
|                    values.at<Pose3>(x3)));
 | |
| 
 | |
|   // linearization point for the poses
 | |
|   Pose3 pose1 = level_pose;
 | |
|   Pose3 pose2 = pose_right;
 | |
|   Pose3 pose3 = pose_above * noise_pose;
 | |
| 
 | |
|   // ==== check Hessian of smartFactor1 =====
 | |
|   // -- compute actual Hessian
 | |
|   boost::shared_ptr<GaussianFactor> linearfactor1 =
 | |
|       smartFactor1->linearize(values);
 | |
|   Matrix actualHessian = linearfactor1->information();
 | |
| 
 | |
|   // -- compute expected Hessian from manual Schur complement from Jacobians
 | |
|   // linearization point for the 3D point
 | |
|   smartFactor1->triangulateSafe(smartFactor1->cameras(values));
 | |
|   TriangulationResult point = smartFactor1->point();
 | |
|   EXPECT(point.valid());  // check triangulated point is valid
 | |
| 
 | |
|   // Use the factor to calculate the Jacobians
 | |
|   Matrix F = Matrix::Zero(2 * 3, 6 * 3);
 | |
|   Matrix E = Matrix::Zero(2 * 3, 3);
 | |
|   Vector b = Vector::Zero(6);
 | |
| 
 | |
|   // create projection factors rolling shutter
 | |
|   ProjectionFactorRollingShutter factor11(measurements_lmk1[0], interp_factor1,
 | |
|                                           model, x1, x2, l0, sharedK);
 | |
|   Matrix H1Actual, H2Actual, H3Actual;
 | |
|   // note: b is minus the reprojection error, cf the smart factor jacobian
 | |
|   // computation
 | |
|   b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
 | |
|                                             H2Actual, H3Actual);
 | |
|   F.block<2, 6>(0, 0) = H1Actual;
 | |
|   F.block<2, 6>(0, 6) = H2Actual;
 | |
|   E.block<2, 3>(0, 0) = H3Actual;
 | |
| 
 | |
|   ProjectionFactorRollingShutter factor12(measurements_lmk1[1], interp_factor2,
 | |
|                                           model, x2, x3, l0, sharedK);
 | |
|   b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
 | |
|                                             H2Actual, H3Actual);
 | |
|   F.block<2, 6>(2, 6) = H1Actual;
 | |
|   F.block<2, 6>(2, 12) = H2Actual;
 | |
|   E.block<2, 3>(2, 0) = H3Actual;
 | |
| 
 | |
|   ProjectionFactorRollingShutter factor13(measurements_lmk1[2], interp_factor3,
 | |
|                                           model, x3, x1, l0, sharedK);
 | |
|   b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
 | |
|                                             H2Actual, H3Actual);
 | |
|   F.block<2, 6>(4, 12) = H1Actual;
 | |
|   F.block<2, 6>(4, 0) = H2Actual;
 | |
|   E.block<2, 3>(4, 0) = H3Actual;
 | |
| 
 | |
|   // whiten
 | |
|   F = (1 / sigma) * F;
 | |
|   E = (1 / sigma) * E;
 | |
|   b = (1 / sigma) * b;
 | |
|   //* G = F' * F - F' * E * P * E' * F
 | |
|   Matrix P = (E.transpose() * E).inverse();
 | |
|   Matrix expectedHessian =
 | |
|       F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
 | |
|   EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
 | |
| 
 | |
|   // ==== check Information vector of smartFactor1 =====
 | |
|   GaussianFactorGraph gfg;
 | |
|   gfg.add(linearfactor1);
 | |
|   Matrix actualHessian_v2 = gfg.hessian().first;
 | |
|   EXPECT(assert_equal(actualHessian_v2, actualHessian,
 | |
|                       1e-6));  // sanity check on hessian
 | |
| 
 | |
|   // -- compute actual information vector
 | |
|   Vector actualInfoVector = gfg.hessian().second;
 | |
| 
 | |
|   // -- compute expected information vector from manual Schur complement from
 | |
|   // Jacobians
 | |
|   //* g = F' * (b - E * P * E' * b)
 | |
|   Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
 | |
|   EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
 | |
| 
 | |
|   // ==== check error of smartFactor1 (again) =====
 | |
|   NonlinearFactorGraph nfg_projFactorsRS;
 | |
|   nfg_projFactorsRS.add(factor11);
 | |
|   nfg_projFactorsRS.add(factor12);
 | |
|   nfg_projFactorsRS.add(factor13);
 | |
|   values.insert(l0, *point);
 | |
| 
 | |
|   double actualError = smartFactor1->error(values);
 | |
|   double expectedError = nfg_projFactorsRS.error(values);
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter,
 | |
|      hessianComparedToProjFactorsRollingShutter_measurementsFromSamePose) {
 | |
|   // in this test we make sure the fact works even if we have multiple pixel
 | |
|   // measurements of the same landmark at a single pose, a setup that occurs in
 | |
|   // multi-camera systems
 | |
| 
 | |
|   using namespace vanillaPoseRS;
 | |
|   Point2Vector measurements_lmk1;
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
| 
 | |
|   // create redundant measurements:
 | |
|   Camera::MeasurementVector measurements_lmk1_redundant = measurements_lmk1;
 | |
|   measurements_lmk1_redundant.push_back(
 | |
|       measurements_lmk1.at(0));  // we readd the first measurement
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
|   interp_factors.push_back(interp_factor1);
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor1->add(measurements_lmk1_redundant, key_pairs, interp_factors);
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise to get a nontrivial linearization
 | |
|   // point
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
|   EXPECT(  // check that the pose is actually noisy
 | |
|       assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
 | |
|                               -0.0313952598, -0.000986635786, 0.0314107591,
 | |
|                               -0.999013364, -0.0313952598),
 | |
|                          Point3(0.1, -0.1, 1.9)),
 | |
|                    values.at<Pose3>(x3)));
 | |
| 
 | |
|   // linearization point for the poses
 | |
|   Pose3 pose1 = level_pose;
 | |
|   Pose3 pose2 = pose_right;
 | |
|   Pose3 pose3 = pose_above * noise_pose;
 | |
| 
 | |
|   // ==== check Hessian of smartFactor1 =====
 | |
|   // -- compute actual Hessian
 | |
|   boost::shared_ptr<GaussianFactor> linearfactor1 =
 | |
|       smartFactor1->linearize(values);
 | |
|   Matrix actualHessian = linearfactor1->information();
 | |
| 
 | |
|   // -- compute expected Hessian from manual Schur complement from Jacobians
 | |
|   // linearization point for the 3D point
 | |
|   smartFactor1->triangulateSafe(smartFactor1->cameras(values));
 | |
|   TriangulationResult point = smartFactor1->point();
 | |
|   EXPECT(point.valid());  // check triangulated point is valid
 | |
| 
 | |
|   // Use standard ProjectionFactorRollingShutter factor to calculate the
 | |
|   // Jacobians
 | |
|   Matrix F = Matrix::Zero(2 * 4, 6 * 3);
 | |
|   Matrix E = Matrix::Zero(2 * 4, 3);
 | |
|   Vector b = Vector::Zero(8);
 | |
| 
 | |
|   // create projection factors rolling shutter
 | |
|   ProjectionFactorRollingShutter factor11(measurements_lmk1_redundant[0],
 | |
|                                           interp_factor1, model, x1, x2, l0,
 | |
|                                           sharedK);
 | |
|   Matrix H1Actual, H2Actual, H3Actual;
 | |
|   // note: b is minus the reprojection error, cf the smart factor jacobian
 | |
|   // computation
 | |
|   b.segment<2>(0) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
 | |
|                                             H2Actual, H3Actual);
 | |
|   F.block<2, 6>(0, 0) = H1Actual;
 | |
|   F.block<2, 6>(0, 6) = H2Actual;
 | |
|   E.block<2, 3>(0, 0) = H3Actual;
 | |
| 
 | |
|   ProjectionFactorRollingShutter factor12(measurements_lmk1_redundant[1],
 | |
|                                           interp_factor2, model, x2, x3, l0,
 | |
|                                           sharedK);
 | |
|   b.segment<2>(2) = -factor12.evaluateError(pose2, pose3, *point, H1Actual,
 | |
|                                             H2Actual, H3Actual);
 | |
|   F.block<2, 6>(2, 6) = H1Actual;
 | |
|   F.block<2, 6>(2, 12) = H2Actual;
 | |
|   E.block<2, 3>(2, 0) = H3Actual;
 | |
| 
 | |
|   ProjectionFactorRollingShutter factor13(measurements_lmk1_redundant[2],
 | |
|                                           interp_factor3, model, x3, x1, l0,
 | |
|                                           sharedK);
 | |
|   b.segment<2>(4) = -factor13.evaluateError(pose3, pose1, *point, H1Actual,
 | |
|                                             H2Actual, H3Actual);
 | |
|   F.block<2, 6>(4, 12) = H1Actual;
 | |
|   F.block<2, 6>(4, 0) = H2Actual;
 | |
|   E.block<2, 3>(4, 0) = H3Actual;
 | |
| 
 | |
|   ProjectionFactorRollingShutter factor14(measurements_lmk1_redundant[3],
 | |
|                                           interp_factor1, model, x1, x2, l0,
 | |
|                                           sharedK);
 | |
|   b.segment<2>(6) = -factor11.evaluateError(pose1, pose2, *point, H1Actual,
 | |
|                                             H2Actual, H3Actual);
 | |
|   F.block<2, 6>(6, 0) = H1Actual;
 | |
|   F.block<2, 6>(6, 6) = H2Actual;
 | |
|   E.block<2, 3>(6, 0) = H3Actual;
 | |
| 
 | |
|   // whiten
 | |
|   F = (1 / sigma) * F;
 | |
|   E = (1 / sigma) * E;
 | |
|   b = (1 / sigma) * b;
 | |
|   //* G = F' * F - F' * E * P * E' * F
 | |
|   Matrix P = (E.transpose() * E).inverse();
 | |
|   Matrix expectedHessian =
 | |
|       F.transpose() * F - (F.transpose() * E * P * E.transpose() * F);
 | |
|   EXPECT(assert_equal(expectedHessian, actualHessian, 1e-6));
 | |
| 
 | |
|   // ==== check Information vector of smartFactor1 =====
 | |
|   GaussianFactorGraph gfg;
 | |
|   gfg.add(linearfactor1);
 | |
|   Matrix actualHessian_v2 = gfg.hessian().first;
 | |
|   EXPECT(assert_equal(actualHessian_v2, actualHessian,
 | |
|                       1e-6));  // sanity check on hessian
 | |
| 
 | |
|   // -- compute actual information vector
 | |
|   Vector actualInfoVector = gfg.hessian().second;
 | |
| 
 | |
|   // -- compute expected information vector from manual Schur complement from
 | |
|   // Jacobians
 | |
|   //* g = F' * (b - E * P * E' * b)
 | |
|   Vector expectedInfoVector = F.transpose() * (b - E * P * E.transpose() * b);
 | |
|   EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-6));
 | |
| 
 | |
|   // ==== check error of smartFactor1 (again) =====
 | |
|   NonlinearFactorGraph nfg_projFactorsRS;
 | |
|   nfg_projFactorsRS.add(factor11);
 | |
|   nfg_projFactorsRS.add(factor12);
 | |
|   nfg_projFactorsRS.add(factor13);
 | |
|   nfg_projFactorsRS.add(factor14);
 | |
|   values.insert(l0, *point);
 | |
| 
 | |
|   double actualError = smartFactor1->error(values);
 | |
|   double expectedError = nfg_projFactorsRS.error(values);
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter,
 | |
|      optimization_3poses_measurementsFromSamePose) {
 | |
|   using namespace vanillaPoseRS;
 | |
|   Point2Vector measurements_lmk1, measurements_lmk2, measurements_lmk3;
 | |
| 
 | |
|   // Project three landmarks into three cameras
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_lmk1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_lmk2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_lmk3);
 | |
| 
 | |
|   // create inputs
 | |
|   std::vector<std::pair<Key, Key>> key_pairs;
 | |
|   key_pairs.push_back(std::make_pair(x1, x2));
 | |
|   key_pairs.push_back(std::make_pair(x2, x3));
 | |
|   key_pairs.push_back(std::make_pair(x3, x1));
 | |
| 
 | |
|   std::vector<double> interp_factors;
 | |
|   interp_factors.push_back(interp_factor1);
 | |
|   interp_factors.push_back(interp_factor2);
 | |
|   interp_factors.push_back(interp_factor3);
 | |
| 
 | |
|   // For first factor, we create redundant measurement (taken by the same keys
 | |
|   // as factor 1, to make sure the redundancy in the keys does not create
 | |
|   // problems)
 | |
|   Camera::MeasurementVector& measurements_lmk1_redundant = measurements_lmk1;
 | |
|   measurements_lmk1_redundant.push_back(
 | |
|       measurements_lmk1.at(0));  // we readd the first measurement
 | |
|   std::vector<std::pair<Key, Key>> key_pairs_redundant = key_pairs;
 | |
|   key_pairs_redundant.push_back(
 | |
|       key_pairs.at(0));  // we readd the first pair of keys
 | |
|   std::vector<double> interp_factors_redundant = interp_factors;
 | |
|   interp_factors_redundant.push_back(
 | |
|       interp_factors.at(0));  // we readd the first interp factor
 | |
| 
 | |
|   boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|   cameraRig->push_back(Camera(Pose3::identity(), sharedK));
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor1(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor1->add(measurements_lmk1_redundant, key_pairs_redundant,
 | |
|                     interp_factors_redundant);
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor2(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor2->add(measurements_lmk2, key_pairs, interp_factors);
 | |
| 
 | |
|   SmartFactorRS::shared_ptr smartFactor3(
 | |
|       new SmartFactorRS(model, cameraRig, params));
 | |
|   smartFactor3->add(measurements_lmk3, key_pairs, interp_factors);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.addPrior(x1, level_pose, noisePrior);
 | |
|   graph.addPrior(x2, pose_right, noisePrior);
 | |
| 
 | |
|   Values groundTruth;
 | |
|   groundTruth.insert(x1, level_pose);
 | |
|   groundTruth.insert(x2, pose_right);
 | |
|   groundTruth.insert(x3, pose_above);
 | |
|   DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10),
 | |
|   //  Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
 | |
|                            Point3(0.1, 0.1, 0.1));  // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, pose_right);
 | |
|   // initialize third pose with some noise, we expect it to move back to
 | |
|   // original pose_above
 | |
|   values.insert(x3, pose_above * noise_pose);
 | |
|   EXPECT(  // check that the pose is actually noisy
 | |
|       assert_equal(Pose3(Rot3(0, -0.0314107591, 0.99950656, -0.99950656,
 | |
|                               -0.0313952598, -0.000986635786, 0.0314107591,
 | |
|                               -0.999013364, -0.0313952598),
 | |
|                          Point3(0.1, -0.1, 1.9)),
 | |
|                    values.at<Pose3>(x3)));
 | |
| 
 | |
|   Values result;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
 | |
|   result = optimizer.optimize();
 | |
|   EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-5));
 | |
| }
 | |
| 
 | |
| #ifndef DISABLE_TIMING
 | |
| #include <gtsam/base/timing.h>
 | |
| //-Total: 0 CPU (0 times, 0 wall, 0.21 children, min: 0 max: 0)
 | |
| //|   -SF RS LINEARIZE: 0.09 CPU
 | |
| // (10000 times, 0.124106 wall, 0.09 children, min: 0 max: 0)
 | |
| //|   -RS LINEARIZE: 0.09 CPU
 | |
| // (10000 times, 0.068719 wall, 0.09 children, min: 0 max: 0)
 | |
| /* *************************************************************************/
 | |
| TEST(SmartProjectionPoseFactorRollingShutter, timing) {
 | |
|   using namespace vanillaPose;
 | |
| 
 | |
|   // Default cameras for simple derivatives
 | |
|   static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
 | |
|   SmartProjectionParams params(
 | |
|       gtsam::HESSIAN,
 | |
|       gtsam::ZERO_ON_DEGENERACY);  // only config that works with RS factors
 | |
| 
 | |
|   Rot3 R = Rot3::identity();
 | |
|   Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
 | |
|   Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
 | |
|   Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
 | |
|   Pose3 body_P_sensorId = Pose3::identity();
 | |
| 
 | |
|   // one landmarks 1m in front of camera
 | |
|   Point3 landmark1(0, 0, 10);
 | |
| 
 | |
|   Point2Vector measurements_lmk1;
 | |
| 
 | |
|   // Project 2 landmarks into 2 cameras
 | |
|   measurements_lmk1.push_back(cam1.project(landmark1));
 | |
|   measurements_lmk1.push_back(cam2.project(landmark1));
 | |
| 
 | |
|   size_t nrTests = 10000;
 | |
| 
 | |
|   for (size_t i = 0; i < nrTests; i++) {
 | |
|     boost::shared_ptr<Cameras> cameraRig(new Cameras());
 | |
|     cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
 | |
| 
 | |
|     SmartFactorRS::shared_ptr smartFactorRS(new SmartFactorRS(
 | |
|         model, cameraRig, params));
 | |
|     double interp_factor = 0;  // equivalent to measurement taken at pose 1
 | |
|     smartFactorRS->add(measurements_lmk1[0], x1, x2, interp_factor);
 | |
|     interp_factor = 1;  // equivalent to measurement taken at pose 2
 | |
|     smartFactorRS->add(measurements_lmk1[1], x1, x2, interp_factor);
 | |
| 
 | |
|     Values values;
 | |
|     values.insert(x1, pose1);
 | |
|     values.insert(x2, pose2);
 | |
|     gttic_(SF_RS_LINEARIZE);
 | |
|     smartFactorRS->linearize(values);
 | |
|     gttoc_(SF_RS_LINEARIZE);
 | |
|   }
 | |
| 
 | |
|   for (size_t i = 0; i < nrTests; i++) {
 | |
|     SmartFactor::shared_ptr smartFactor(
 | |
|         new SmartFactor(model, sharedKSimple, params));
 | |
|     smartFactor->add(measurements_lmk1[0], x1);
 | |
|     smartFactor->add(measurements_lmk1[1], x2);
 | |
| 
 | |
|     Values values;
 | |
|     values.insert(x1, pose1);
 | |
|     values.insert(x2, pose2);
 | |
|     gttic_(RS_LINEARIZE);
 | |
|     smartFactor->linearize(values);
 | |
|     gttoc_(RS_LINEARIZE);
 | |
|   }
 | |
|   tictoc_print_();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() {
 | |
|   TestResult tr;
 | |
|   return TestRegistry::runAllTests(tr);
 | |
| }
 | |
| /* ************************************************************************* */
 |