1054 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			1054 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  *  @file  TestSmartProjectionPoseFactor.cpp
 | |
|  *  @brief Unit tests for ProjectionFactor Class
 | |
|  *  @author Chris Beall
 | |
|  *  @author Luca Carlone
 | |
|  *  @author Zsolt Kira
 | |
|  *  @date   Sept 2013
 | |
|  */
 | |
| 
 | |
| #include "../SmartProjectionPoseFactor.h"
 | |
| 
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/slam/PoseTranslationPrior.h>
 | |
| #include <gtsam/slam/ProjectionFactor.h>
 | |
| #include <boost/assign/std/vector.hpp>
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace boost::assign;
 | |
| using namespace gtsam;
 | |
| 
 | |
| static bool isDebugTest = false;
 | |
| 
 | |
| // make a realistic calibration matrix
 | |
| static double fov = 60; // degrees
 | |
| static size_t w=640,h=480;
 | |
| 
 | |
| static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
 | |
| static Cal3_S2::shared_ptr K2(new Cal3_S2(1500, 1200, 0, 640, 480));
 | |
| static boost::shared_ptr<Cal3Bundler> Kbundler(new Cal3Bundler(500, 1e-3, 1e-3, 1000, 2000));
 | |
| 
 | |
| static double rankTol = 1.0;
 | |
| static double linThreshold = -1.0;
 | |
| static bool manageDegeneracy = true;
 | |
| // Create a noise model for the pixel error
 | |
| static SharedNoiseModel model(noiseModel::Unit::Create(2));
 | |
| 
 | |
| // Convenience for named keys
 | |
| using symbol_shorthand::X;
 | |
| using symbol_shorthand::L;
 | |
| 
 | |
| // tests data
 | |
| Symbol x1('X',  1);
 | |
| Symbol x2('X',  2);
 | |
| Symbol x3('X',  3);
 | |
| 
 | |
| static Key poseKey1(x1);
 | |
| static Point2 measurement1(323.0, 240.0);
 | |
| static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
 | |
| 
 | |
| typedef SmartProjectionPoseFactor<Pose3,Point3,Cal3_S2> SmartFactor;
 | |
| typedef SmartProjectionPoseFactor<Pose3,Point3,Cal3Bundler> SmartFactorBundler;
 | |
| 
 | |
| void projectToMultipleCameras(
 | |
|     SimpleCamera cam1, SimpleCamera cam2, SimpleCamera cam3, Point3 landmark,
 | |
|     vector<Point2>& measurements_cam){
 | |
| 
 | |
|   Point2 cam1_uv1 = cam1.project(landmark);
 | |
|   Point2 cam2_uv1 = cam2.project(landmark);
 | |
|   Point2 cam3_uv1 = cam3.project(landmark);
 | |
|   measurements_cam.push_back(cam1_uv1);
 | |
|   measurements_cam.push_back(cam2_uv1);
 | |
|   measurements_cam.push_back(cam3_uv1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionPoseFactor, Constructor) {
 | |
|   SmartFactor::shared_ptr factor1(new SmartFactor());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionPoseFactor, Constructor2) {
 | |
|   SmartFactor factor1(rankTol, linThreshold);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionPoseFactor, Constructor3) {
 | |
|   SmartFactor::shared_ptr factor1(new SmartFactor());
 | |
|   factor1->add(measurement1, poseKey1, model, K);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionPoseFactor, Constructor4) {
 | |
|   SmartFactor factor1(rankTol, linThreshold);
 | |
|   factor1.add(measurement1, poseKey1, model, K);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionPoseFactor, ConstructorWithTransform) {
 | |
|   bool manageDegeneracy = true;
 | |
|   bool enableEPI = false;
 | |
|   SmartFactor factor1(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor1);
 | |
|   factor1.add(measurement1, poseKey1, model, K);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionPoseFactor, Equals ) {
 | |
|   SmartFactor::shared_ptr factor1(new SmartFactor());
 | |
|   factor1->add(measurement1, poseKey1, model, K);
 | |
| 
 | |
|   SmartFactor::shared_ptr factor2(new SmartFactor());
 | |
|   factor2->add(measurement1, poseKey1, model, K);
 | |
| 
 | |
|   CHECK(assert_equal(*factor1, *factor2));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST_UNSAFE( SmartProjectionPoseFactor, noiseless ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: noisy ****************************" << endl;
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera level_camera(level_pose, *K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera level_camera_right(level_pose_right, *K2);
 | |
| 
 | |
|   // landmark ~5 meters infront of camera
 | |
|   Point3 landmark(5, 0.5, 1.2);
 | |
| 
 | |
|   // 1. Project two landmarks into two cameras and triangulate
 | |
|   Point2 level_uv = level_camera.project(landmark);
 | |
|   Point2 level_uv_right = level_camera_right.project(landmark);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   values.insert(x2, level_pose_right);
 | |
| 
 | |
|   SmartFactor factor1;
 | |
|   factor1.add(level_uv, x1, model, K);
 | |
|   factor1.add(level_uv_right, x2, model, K);
 | |
| 
 | |
|   double actualError = factor1.error(values);
 | |
|   double expectedError = 0.0;
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
 | |
| 
 | |
|   SmartFactor::Cameras cameras = factor1.cameras(values);
 | |
|   double actualError2 = factor1.totalReprojectionError(cameras);
 | |
|   EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
 | |
| 
 | |
|   // test vector of errors
 | |
|   //Vector actual = factor1.unwhitenedError(values);
 | |
|   //EXPECT(assert_equal(zero(4),actual,1e-8));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, noisy ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: noisy ****************************" << endl;
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera level_camera(level_pose, *K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera level_camera_right(level_pose_right, *K2);
 | |
| 
 | |
|   // landmark ~5 meters infront of camera
 | |
|   Point3 landmark(5, 0.5, 1.2);
 | |
| 
 | |
|   // 1. Project two landmarks into two cameras and triangulate
 | |
|   Point2 pixelError(0.2,0.2);
 | |
|   Point2 level_uv = level_camera.project(landmark) + pixelError;
 | |
|   Point2 level_uv_right = level_camera_right.project(landmark);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, level_pose);
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | |
|   values.insert(x2, level_pose_right.compose(noise_pose));
 | |
| 
 | |
|   SmartFactor::shared_ptr factor1(new SmartFactor());
 | |
|   factor1->add(level_uv, x1, model, K);
 | |
|   factor1->add(level_uv_right, x2, model, K);
 | |
| 
 | |
|   double actualError1= factor1->error(values);
 | |
| 
 | |
|   SmartFactor::shared_ptr factor2(new SmartFactor());
 | |
|   vector<Point2> measurements;
 | |
|   measurements.push_back(level_uv);
 | |
|   measurements.push_back(level_uv_right);
 | |
| 
 | |
|   std::vector< SharedNoiseModel > noises;
 | |
|   noises.push_back(model);
 | |
|   noises.push_back(model);
 | |
| 
 | |
|   std::vector< boost::shared_ptr<Cal3_S2> > Ks;  ///< shared pointer to calibration object (one for each camera)
 | |
|   Ks.push_back(K);
 | |
|   Ks.push_back(K);
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
| 
 | |
|   factor2->add(measurements, views, noises, Ks);
 | |
| 
 | |
|   double actualError2= factor2->error(values);
 | |
| 
 | |
|   DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: 3 cams + 3 landmarks **********************" << endl;
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K2);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
|   SimpleCamera cam3(pose3, *K2);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor1(new SmartFactor());
 | |
|   smartFactor1->add(measurements_cam1, views, model, K2);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor2(new SmartFactor());
 | |
|   smartFactor2->add(measurements_cam2, views, model, K2);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor3(new SmartFactor());
 | |
|   smartFactor3->add(measurements_cam3, views, model, K2);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3*noise_pose);
 | |
|   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartProjectionPoseFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionPoseFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
| //  GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
 | |
| //  VectorValues delta = GFG->optimize();
 | |
| 
 | |
|   // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | |
|   EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
|   if(isDebugTest) tictoc_print_();
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: 3 cams + 3 landmarks **********************" << endl;
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
|   SimpleCamera cam3(pose3, *K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor1(new SmartFactor());
 | |
|   smartFactor1->add(measurements_cam1, views, model, K);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor2(new SmartFactor());
 | |
|   smartFactor2->add(measurements_cam2, views, model, K);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor3(new SmartFactor());
 | |
|   smartFactor3->add(measurements_cam3, views, model, K);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3*noise_pose);
 | |
|   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartProjectionPoseFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionPoseFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
|   // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | |
|   EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
|   if(isDebugTest) tictoc_print_();
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, 3poses_projection_factor ){
 | |
|   //  cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K2);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
|   SimpleCamera cam3(pose3, *K2);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   graph.push_back(ProjectionFactor(cam1.project(landmark1), model, x1, L(1), K2));
 | |
|   graph.push_back(ProjectionFactor(cam2.project(landmark1), model, x2, L(1), K2));
 | |
|   graph.push_back(ProjectionFactor(cam3.project(landmark1), model, x3, L(1), K2));
 | |
| 
 | |
|   graph.push_back(ProjectionFactor(cam1.project(landmark2), model, x1, L(2), K2));
 | |
|   graph.push_back(ProjectionFactor(cam2.project(landmark2), model, x2, L(2), K2));
 | |
|   graph.push_back(ProjectionFactor(cam3.project(landmark2), model, x3, L(2), K2));
 | |
| 
 | |
|   graph.push_back(ProjectionFactor(cam1.project(landmark3), model, x1, L(3), K2));
 | |
|   graph.push_back(ProjectionFactor(cam2.project(landmark3), model, x2, L(3), K2));
 | |
|   graph.push_back(ProjectionFactor(cam3.project(landmark3), model, x3, L(3), K2));
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3* noise_pose);
 | |
|   values.insert(L(1), landmark1);
 | |
|   values.insert(L(2), landmark2);
 | |
|   values.insert(L(3), landmark3);
 | |
|   if(isDebugTest)  values.at<Pose3>(x3).print("Pose3 before optimization: ");
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   if(isDebugTest)  params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   if(isDebugTest)  params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   Values result = optimizer.optimize();
 | |
| 
 | |
|   if(isDebugTest)  result.at<Pose3>(x3).print("Pose3 after optimization: ");
 | |
|   EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, CheckHessian){
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   SimpleCamera cam2(pose2, *K);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   SimpleCamera cam3(pose3, *K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | |
| 
 | |
|   double rankTol = 10;
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol));
 | |
|   smartFactor1->add(measurements_cam1, views, model, K);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol));
 | |
|   smartFactor2->add(measurements_cam2, views, model, K);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor3(new SmartFactor(rankTol));
 | |
|   smartFactor3->add(measurements_cam3, views, model, K);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3*noise_pose);
 | |
|   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(values);
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor2 = smartFactor2->linearize(values);
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor3 = smartFactor3->linearize(values);
 | |
| 
 | |
|   Matrix CumulativeInformation = hessianFactor1->information() +  hessianFactor2->information() + hessianFactor3->information();
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(values);
 | |
|   Matrix GraphInformation = GaussianGraph->hessian().first;
 | |
| 
 | |
|   // Check Hessian
 | |
|   EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8));
 | |
| 
 | |
|   Matrix AugInformationMatrix = hessianFactor1->augmentedInformation() +
 | |
|       hessianFactor2->augmentedInformation() + hessianFactor3->augmentedInformation();
 | |
| 
 | |
|   // Check Information vector
 | |
|   // cout << AugInformationMatrix.size() << endl;
 | |
|   Vector InfoVector = AugInformationMatrix.block(0,18,18,1); // 18x18 Hessian + information vector
 | |
| 
 | |
|   // Check Hessian
 | |
|   EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8));
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: 3 cams + 2 landmarks: Rotation Only**********************" << endl;
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   SimpleCamera cam2(pose2, *K2);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   SimpleCamera cam3(pose3, *K2);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
| 
 | |
|   double rankTol = 50;
 | |
|   SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor1->add(measurements_cam1, views, model, K2);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor2->add(measurements_cam2, views, model, K2);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
|   const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
 | |
|   Point3 positionPrior = gtsam::Point3(0,0,1);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
 | |
|   graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2*noise_pose);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3*noise_pose*noise_pose);
 | |
|   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
 | |
|   if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartProjectionPoseFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionPoseFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
|   // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | |
|   std::cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << std::endl;
 | |
|   // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
|   if(isDebugTest) tictoc_print_();
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: 3 cams + 3 landmarks: Rotation Only**********************" << endl;
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   SimpleCamera cam2(pose2, *K);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   SimpleCamera cam3(pose3, *K);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
 | |
| 
 | |
|   double rankTol = 10;
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor1->add(measurements_cam1, views, model, K);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor2->add(measurements_cam2, views, model, K);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor3(new SmartFactor(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor3->add(measurements_cam3, views, model, K);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
|   const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
 | |
|   Point3 positionPrior = gtsam::Point3(0,0,1);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
 | |
|   graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3*noise_pose);
 | |
|   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
 | |
|   if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartProjectionPoseFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionPoseFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
|   // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | |
|   std::cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << std::endl;
 | |
|   // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
|   if(isDebugTest) tictoc_print_();
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, Hessian ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: Hessian **********************" << endl;
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K2);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   Point2 cam1_uv1 = cam1.project(landmark1);
 | |
|   Point2 cam2_uv1 = cam2.project(landmark1);
 | |
|   vector<Point2> measurements_cam1;
 | |
|   measurements_cam1.push_back(cam1_uv1);
 | |
|   measurements_cam1.push_back(cam2_uv1);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor1(new SmartFactor());
 | |
|   smartFactor1->add(measurements_cam1,views, model, K2);
 | |
| 
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(values);
 | |
|   if(isDebugTest) hessianFactor->print("Hessian factor \n");
 | |
| 
 | |
|   // compute triangulation from linearization point
 | |
|   // compute reprojection errors (sum squared)
 | |
|   // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
 | |
|   // check that it is correctly scaled when using noiseProjection = [1/4  0; 0 1/4]
 | |
| }
 | |
| 
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, HessianWithRotation ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: rotated Hessian **********************" << endl;
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   SimpleCamera cam2(pose2, *K);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
|   SimpleCamera cam3(pose3, *K);
 | |
| 
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactorInstance(new SmartFactor());
 | |
|   smartFactorInstance->add(measurements_cam1, views, model, K);
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3);
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor = smartFactorInstance->linearize(values);
 | |
|   // hessianFactor->print("Hessian factor \n");
 | |
| 
 | |
|   Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,0));
 | |
| 
 | |
|   Values rotValues;
 | |
|   rotValues.insert(x1, poseDrift.compose(pose1));
 | |
|   rotValues.insert(x2, poseDrift.compose(pose2));
 | |
|   rotValues.insert(x3, poseDrift.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactorInstance->linearize(rotValues);
 | |
|   // hessianFactorRot->print("Hessian factor \n");
 | |
| 
 | |
|   // Hessian is invariant to rotations in the nondegenerate case
 | |
|   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRot->information(), 1e-8) );
 | |
| 
 | |
|   Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI/2, -M_PI/3, -M_PI/2), gtsam::Point3(10,-4,5));
 | |
| 
 | |
|   Values tranValues;
 | |
|   tranValues.insert(x1, poseDrift2.compose(pose1));
 | |
|   tranValues.insert(x2, poseDrift2.compose(pose2));
 | |
|   tranValues.insert(x3, poseDrift2.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRotTran = smartFactorInstance->linearize(tranValues);
 | |
| 
 | |
|   // Hessian is invariant to rotations and translations in the nondegenerate case
 | |
|   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRotTran->information(), 1e-8) );
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: rotated Hessian (degenerate) **********************" << endl;
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   SimpleCamera cam1(pose1, *K2);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(0,0,0));
 | |
|   SimpleCamera cam2(pose2, *K2);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,0,0));
 | |
|   SimpleCamera cam3(pose3, *K2);
 | |
| 
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
 | |
| 
 | |
|   SmartFactor::shared_ptr smartFactor(new SmartFactor());
 | |
|   smartFactor->add(measurements_cam1, views, model, K2);
 | |
| 
 | |
| 
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   values.insert(x3, pose3);
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(values);
 | |
|   if(isDebugTest)  hessianFactor->print("Hessian factor \n");
 | |
| 
 | |
|   Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,0));
 | |
| 
 | |
|   Values rotValues;
 | |
|   rotValues.insert(x1, poseDrift.compose(pose1));
 | |
|   rotValues.insert(x2, poseDrift.compose(pose2));
 | |
|   rotValues.insert(x3, poseDrift.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(rotValues);
 | |
|   if(isDebugTest)  hessianFactorRot->print("Hessian factor \n");
 | |
| 
 | |
|   // Hessian is invariant to rotations in the nondegenerate case
 | |
|   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRot->information(), 1e-8) );
 | |
| 
 | |
|   Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI/2, -M_PI/3, -M_PI/2), gtsam::Point3(10,-4,5));
 | |
| 
 | |
|   Values tranValues;
 | |
|   tranValues.insert(x1, poseDrift2.compose(pose1));
 | |
|   tranValues.insert(x2, poseDrift2.compose(pose2));
 | |
|   tranValues.insert(x3, poseDrift2.compose(pose3));
 | |
| 
 | |
|   boost::shared_ptr<GaussianFactor> hessianFactorRotTran = smartFactor->linearize(tranValues);
 | |
| 
 | |
|   // Hessian is invariant to rotations and translations in the nondegenerate case
 | |
|   EXPECT(assert_equal(hessianFactor->information(), hessianFactorRotTran->information(), 1e-8) );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( SmartProjectionPoseFactor, ConstructorWithCal3Bundler) {
 | |
|   SmartProjectionPoseFactor<Pose3,Point3,Cal3Bundler> factor1(rankTol, linThreshold);
 | |
|   boost::shared_ptr<Cal3Bundler> Kbundler(new Cal3Bundler(500, 1e-3, 1e-3, 1000, 2000));
 | |
|   factor1.add(measurement1, poseKey1, model, Kbundler);
 | |
| }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, Cal3Bundler ){
 | |
|   // cout << " ************************ SmartProjectionPoseFactor: Cal3Bundler **********************" << endl;
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   PinholeCamera<Cal3Bundler> cam1(pose1, *Kbundler);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
 | |
|   PinholeCamera<Cal3Bundler> cam2(pose2, *Kbundler);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
 | |
|   PinholeCamera<Cal3Bundler> cam3(pose3, *Kbundler);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   Point2 cam1_uv1 = cam1.project(landmark1);
 | |
|   Point2 cam2_uv1 = cam2.project(landmark1);
 | |
|   Point2 cam3_uv1 = cam3.project(landmark1);
 | |
|   measurements_cam1.push_back(cam1_uv1);
 | |
|   measurements_cam1.push_back(cam2_uv1);
 | |
|   measurements_cam1.push_back(cam3_uv1);
 | |
| 
 | |
|   Point2 cam1_uv2 = cam1.project(landmark2);
 | |
|   Point2 cam2_uv2 = cam2.project(landmark2);
 | |
|   Point2 cam3_uv2 = cam3.project(landmark2);
 | |
|   measurements_cam2.push_back(cam1_uv2);
 | |
|   measurements_cam2.push_back(cam2_uv2);
 | |
|   measurements_cam2.push_back(cam3_uv2);
 | |
| 
 | |
|   Point2 cam1_uv3 = cam1.project(landmark3);
 | |
|   Point2 cam2_uv3 = cam2.project(landmark3);
 | |
|   Point2 cam3_uv3 = cam3.project(landmark3);
 | |
|   measurements_cam3.push_back(cam1_uv3);
 | |
|   measurements_cam3.push_back(cam2_uv3);
 | |
|   measurements_cam3.push_back(cam3_uv3);
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   SmartFactorBundler::shared_ptr smartFactor1(new SmartFactorBundler());
 | |
|   smartFactor1->add(measurements_cam1, views, model, Kbundler);
 | |
| 
 | |
|   SmartFactorBundler::shared_ptr smartFactor2(new SmartFactorBundler());
 | |
|   smartFactor2->add(measurements_cam2, views, model, Kbundler);
 | |
| 
 | |
|   SmartFactorBundler::shared_ptr smartFactor3(new SmartFactorBundler());
 | |
|   smartFactor3->add(measurements_cam3, views, model, Kbundler);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PriorFactor<Pose3>(x2, pose2, noisePrior));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3*noise_pose);
 | |
|   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
 | |
|   if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartProjectionPoseFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionPoseFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
|   // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | |
|   EXPECT(assert_equal(pose3,result.at<Pose3>(x3), 1e-6));
 | |
|   if(isDebugTest) tictoc_print_();
 | |
|  }
 | |
| 
 | |
| /* *************************************************************************/
 | |
| TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly  ){
 | |
| 
 | |
|   std::vector<Key> views;
 | |
|   views.push_back(x1);
 | |
|   views.push_back(x2);
 | |
|   views.push_back(x3);
 | |
| 
 | |
|   // create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
 | |
|   Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
 | |
|   PinholeCamera<Cal3Bundler> cam1(pose1, *Kbundler);
 | |
| 
 | |
|   // create second camera 1 meter to the right of first camera
 | |
|   Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   PinholeCamera<Cal3Bundler> cam2(pose2, *Kbundler);
 | |
| 
 | |
|   // create third camera 1 meter above the first camera
 | |
|   Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0));
 | |
|   PinholeCamera<Cal3Bundler> cam3(pose3, *Kbundler);
 | |
| 
 | |
|   // three landmarks ~5 meters infront of camera
 | |
|   Point3 landmark1(5, 0.5, 1.2);
 | |
|   Point3 landmark2(5, -0.5, 1.2);
 | |
|   Point3 landmark3(3, 0, 3.0);
 | |
| 
 | |
|   vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
 | |
| 
 | |
|   // 1. Project three landmarks into three cameras and triangulate
 | |
|   Point2 cam1_uv1 = cam1.project(landmark1);
 | |
|   Point2 cam2_uv1 = cam2.project(landmark1);
 | |
|   Point2 cam3_uv1 = cam3.project(landmark1);
 | |
|   measurements_cam1.push_back(cam1_uv1);
 | |
|   measurements_cam1.push_back(cam2_uv1);
 | |
|   measurements_cam1.push_back(cam3_uv1);
 | |
| 
 | |
|   Point2 cam1_uv2 = cam1.project(landmark2);
 | |
|   Point2 cam2_uv2 = cam2.project(landmark2);
 | |
|   Point2 cam3_uv2 = cam3.project(landmark2);
 | |
|   measurements_cam2.push_back(cam1_uv2);
 | |
|   measurements_cam2.push_back(cam2_uv2);
 | |
|   measurements_cam2.push_back(cam3_uv2);
 | |
| 
 | |
|   Point2 cam1_uv3 = cam1.project(landmark3);
 | |
|   Point2 cam2_uv3 = cam2.project(landmark3);
 | |
|   Point2 cam3_uv3 = cam3.project(landmark3);
 | |
|   measurements_cam3.push_back(cam1_uv3);
 | |
|   measurements_cam3.push_back(cam2_uv3);
 | |
|   measurements_cam3.push_back(cam3_uv3);
 | |
| 
 | |
|   double rankTol = 10;
 | |
| 
 | |
|   SmartFactorBundler::shared_ptr smartFactor1(new SmartFactorBundler(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor1->add(measurements_cam1, views, model, Kbundler);
 | |
| 
 | |
|   SmartFactorBundler::shared_ptr smartFactor2(new SmartFactorBundler(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor2->add(measurements_cam2, views, model, Kbundler);
 | |
| 
 | |
|   SmartFactorBundler::shared_ptr smartFactor3(new SmartFactorBundler(rankTol, linThreshold, manageDegeneracy));
 | |
|   smartFactor3->add(measurements_cam3, views, model, Kbundler);
 | |
| 
 | |
|   const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
 | |
|   const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10);
 | |
|   Point3 positionPrior = gtsam::Point3(0,0,1);
 | |
| 
 | |
|   NonlinearFactorGraph graph;
 | |
|   graph.push_back(smartFactor1);
 | |
|   graph.push_back(smartFactor2);
 | |
|   graph.push_back(smartFactor3);
 | |
|   graph.push_back(PriorFactor<Pose3>(x1, pose1, noisePrior));
 | |
|   graph.push_back(PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
 | |
|   graph.push_back(PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
 | |
| 
 | |
|   //  Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
 | |
|   Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise
 | |
|   Values values;
 | |
|   values.insert(x1, pose1);
 | |
|   values.insert(x2, pose2);
 | |
|   // initialize third pose with some noise, we expect it to move back to original pose3
 | |
|   values.insert(x3, pose3*noise_pose);
 | |
|   if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
 | |
| 
 | |
|   LevenbergMarquardtParams params;
 | |
|   if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
 | |
|   if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
 | |
| 
 | |
|   Values result;
 | |
|   gttic_(SmartProjectionPoseFactor);
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, values, params);
 | |
|   result = optimizer.optimize();
 | |
|   gttoc_(SmartProjectionPoseFactor);
 | |
|   tictoc_finishedIteration_();
 | |
| 
 | |
|   // result.print("results of 3 camera, 3 landmark optimization \n");
 | |
|   if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
 | |
|   std::cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << std::endl;
 | |
|   // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
 | |
|   if(isDebugTest) tictoc_print_();
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| 
 |