690 lines
26 KiB
C++
690 lines
26 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file SmartFactorBase.h
|
|
* @brief Base class to create smart factors on poses or cameras
|
|
* @author Luca Carlone
|
|
* @author Zsolt Kira
|
|
* @author Frank Dellaert
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam/slam/JacobianFactorQ.h>
|
|
#include <gtsam/slam/JacobianFactorSVD.h>
|
|
#include <gtsam/slam/RegularImplicitSchurFactor.h>
|
|
#include <gtsam/slam/RegularHessianFactor.h>
|
|
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
#include <gtsam/geometry/PinholeCamera.h> // for Cheirality exception
|
|
#include <gtsam/geometry/StereoCamera.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/inference/Symbol.h>
|
|
|
|
#include <boost/optional.hpp>
|
|
#include <boost/make_shared.hpp>
|
|
#include <vector>
|
|
|
|
namespace gtsam {
|
|
/// Base class with no internal point, completely functional
|
|
template<class POSE, class Z, class CAMERA, size_t D>
|
|
class SmartFactorBase: public NonlinearFactor {
|
|
|
|
protected:
|
|
|
|
// Keep a copy of measurement and calibration for I/O
|
|
std::vector<Z> measured_; ///< 2D measurement for each of the m views
|
|
std::vector<SharedNoiseModel> noise_; ///< noise model used
|
|
///< (important that the order is the same as the keys that we use to create the factor)
|
|
|
|
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame (one for all cameras)
|
|
|
|
static const int ZDim = traits::dimension<Z>::value; ///< Measurement dimension
|
|
|
|
/// Definitions for blocks of F
|
|
typedef Eigen::Matrix<double, ZDim, D> Matrix2D; // F
|
|
typedef Eigen::Matrix<double, D, ZDim> MatrixD2; // F'
|
|
typedef std::pair<Key, Matrix2D> KeyMatrix2D; // Fblocks
|
|
typedef Eigen::Matrix<double, D, D> MatrixDD; // camera hessian block
|
|
typedef Eigen::Matrix<double, ZDim, 3> Matrix23;
|
|
typedef Eigen::Matrix<double, D, 1> VectorD;
|
|
typedef Eigen::Matrix<double, ZDim, ZDim> Matrix2;
|
|
|
|
/// shorthand for base class type
|
|
typedef NonlinearFactor Base;
|
|
|
|
/// shorthand for this class
|
|
typedef SmartFactorBase<POSE, Z, CAMERA, D> This;
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
|
|
|
/// shorthand for a smart pointer to a factor
|
|
typedef boost::shared_ptr<This> shared_ptr;
|
|
|
|
/// shorthand for a pinhole camera
|
|
typedef std::vector<CAMERA> Cameras;
|
|
|
|
/**
|
|
* Constructor
|
|
* @param body_P_sensor is the transform from sensor to body frame (default identity)
|
|
*/
|
|
SmartFactorBase(boost::optional<POSE> body_P_sensor = boost::none) :
|
|
body_P_sensor_(body_P_sensor) {
|
|
}
|
|
|
|
/** Virtual destructor */
|
|
virtual ~SmartFactorBase() {
|
|
}
|
|
|
|
/**
|
|
* add a new measurement and pose key
|
|
* @param measured_i is the 2m dimensional projection of a single landmark
|
|
* @param poseKey is the index corresponding to the camera observing the landmark
|
|
* @param noise_i is the measurement noise
|
|
*/
|
|
void add(const Z& measured_i, const Key& poseKey_i,
|
|
const SharedNoiseModel& noise_i) {
|
|
this->measured_.push_back(measured_i);
|
|
this->keys_.push_back(poseKey_i);
|
|
this->noise_.push_back(noise_i);
|
|
}
|
|
|
|
/**
|
|
* variant of the previous add: adds a bunch of measurements, together with the camera keys and noises
|
|
*/
|
|
// ****************************************************************************************************
|
|
void add(std::vector<Z>& measurements, std::vector<Key>& poseKeys,
|
|
std::vector<SharedNoiseModel>& noises) {
|
|
for (size_t i = 0; i < measurements.size(); i++) {
|
|
this->measured_.push_back(measurements.at(i));
|
|
this->keys_.push_back(poseKeys.at(i));
|
|
this->noise_.push_back(noises.at(i));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* variant of the previous add: adds a bunch of measurements and uses the same noise model for all of them
|
|
*/
|
|
// ****************************************************************************************************
|
|
void add(std::vector<Z>& measurements, std::vector<Key>& poseKeys,
|
|
const SharedNoiseModel& noise) {
|
|
for (size_t i = 0; i < measurements.size(); i++) {
|
|
this->measured_.push_back(measurements.at(i));
|
|
this->keys_.push_back(poseKeys.at(i));
|
|
this->noise_.push_back(noise);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Adds an entire SfM_track (collection of cameras observing a single point).
|
|
* The noise is assumed to be the same for all measurements
|
|
*/
|
|
// ****************************************************************************************************
|
|
// void add(const SfM_Track& trackToAdd, const SharedNoiseModel& noise) {
|
|
// for (size_t k = 0; k < trackToAdd.number_measurements(); k++) {
|
|
// this->measured_.push_back(trackToAdd.measurements[k].second);
|
|
// this->keys_.push_back(trackToAdd.measurements[k].first);
|
|
// this->noise_.push_back(noise);
|
|
// }
|
|
// }
|
|
|
|
/** return the measurements */
|
|
const std::vector<Z>& measured() const {
|
|
return measured_;
|
|
}
|
|
|
|
/** return the noise model */
|
|
const std::vector<SharedNoiseModel>& noise() const {
|
|
return noise_;
|
|
}
|
|
|
|
/**
|
|
* print
|
|
* @param s optional string naming the factor
|
|
* @param keyFormatter optional formatter useful for printing Symbols
|
|
*/
|
|
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
|
DefaultKeyFormatter) const {
|
|
std::cout << s << "SmartFactorBase, z = \n";
|
|
for (size_t k = 0; k < measured_.size(); ++k) {
|
|
std::cout << "measurement, p = " << measured_[k] << "\t";
|
|
noise_[k]->print("noise model = ");
|
|
}
|
|
if (this->body_P_sensor_)
|
|
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
|
Base::print("", keyFormatter);
|
|
}
|
|
|
|
/// equals
|
|
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
|
|
const This *e = dynamic_cast<const This*>(&p);
|
|
|
|
bool areMeasurementsEqual = true;
|
|
for (size_t i = 0; i < measured_.size(); i++) {
|
|
if (this->measured_.at(i).equals(e->measured_.at(i), tol) == false)
|
|
areMeasurementsEqual = false;
|
|
break;
|
|
}
|
|
return e && Base::equals(p, tol) && areMeasurementsEqual
|
|
&& ((!body_P_sensor_ && !e->body_P_sensor_)
|
|
|| (body_P_sensor_ && e->body_P_sensor_
|
|
&& body_P_sensor_->equals(*e->body_P_sensor_)));
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
// /// Calculate vector of re-projection errors, before applying noise model
|
|
Vector reprojectionError(const Cameras& cameras, const Point3& point) const {
|
|
|
|
Vector b = zero(ZDim * cameras.size());
|
|
|
|
size_t i = 0;
|
|
BOOST_FOREACH(const CAMERA& camera, cameras) {
|
|
const Z& zi = this->measured_.at(i);
|
|
try {
|
|
Z e(camera.project(point) - zi);
|
|
b[ZDim * i] = e.x();
|
|
b[ZDim * i + 1] = e.y();
|
|
} catch (CheiralityException& e) {
|
|
std::cout << "Cheirality exception " << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
i += 1;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
/**
|
|
* Calculate the error of the factor.
|
|
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
|
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
|
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
|
* This is different from reprojectionError(cameras,point) as each point is whitened
|
|
*/
|
|
double totalReprojectionError(const Cameras& cameras,
|
|
const Point3& point) const {
|
|
|
|
double overallError = 0;
|
|
|
|
size_t i = 0;
|
|
BOOST_FOREACH(const CAMERA& camera, cameras) {
|
|
const Z& zi = this->measured_.at(i);
|
|
try {
|
|
Z reprojectionError(camera.project(point) - zi);
|
|
overallError += 0.5
|
|
* this->noise_.at(i)->distance(reprojectionError.vector());
|
|
} catch (CheiralityException&) {
|
|
std::cout << "Cheirality exception " << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
i += 1;
|
|
}
|
|
return overallError;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
/// Assumes non-degenerate !
|
|
void computeEP(Matrix& E, Matrix& PointCov, const Cameras& cameras,
|
|
const Point3& point) const {
|
|
|
|
int numKeys = this->keys_.size();
|
|
E = zeros(ZDim * numKeys, 3);
|
|
Vector b = zero(2 * numKeys);
|
|
|
|
Matrix Ei(ZDim, 3);
|
|
for (size_t i = 0; i < this->measured_.size(); i++) {
|
|
try {
|
|
cameras[i].project(point, boost::none, Ei);
|
|
} catch (CheiralityException& e) {
|
|
std::cout << "Cheirality exception " << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
this->noise_.at(i)->WhitenSystem(Ei, b);
|
|
E.block<ZDim, 3>(ZDim * i, 0) = Ei;
|
|
}
|
|
|
|
// Matrix PointCov;
|
|
PointCov.noalias() = (E.transpose() * E).inverse();
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
/// Compute F, E only (called below in both vanilla and SVD versions)
|
|
/// Given a Point3, assumes dimensionality is 3
|
|
double computeJacobians(std::vector<KeyMatrix2D>& Fblocks, Matrix& E,
|
|
Vector& b, const Cameras& cameras, const Point3& point) const {
|
|
|
|
size_t numKeys = this->keys_.size();
|
|
E = zeros(ZDim * numKeys, 3);
|
|
b = zero(ZDim * numKeys);
|
|
double f = 0;
|
|
|
|
Matrix Fi(ZDim, 6), Ei(ZDim, 3), Hcali(ZDim, D - 6), Hcam(ZDim, D);
|
|
for (size_t i = 0; i < this->measured_.size(); i++) {
|
|
|
|
Vector bi;
|
|
try {
|
|
bi = -(cameras[i].project(point, Fi, Ei, Hcali) - this->measured_.at(i)).vector();
|
|
if(body_P_sensor_){
|
|
Pose3 w_Pose_body = (cameras[i].pose()).compose(body_P_sensor_->inverse());
|
|
Matrix J(6, 6);
|
|
Pose3 world_P_body = w_Pose_body.compose(*body_P_sensor_, J);
|
|
Fi = Fi * J;
|
|
}
|
|
} catch (CheiralityException&) {
|
|
std::cout << "Cheirality exception " << std::endl;
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
this->noise_.at(i)->WhitenSystem(Fi, Ei, Hcali, bi);
|
|
|
|
f += bi.squaredNorm();
|
|
if (D == 6) { // optimize only camera pose
|
|
Fblocks.push_back(KeyMatrix2D(this->keys_[i], Fi));
|
|
} else {
|
|
Hcam.block<ZDim, 6>(0, 0) = Fi; // ZDim x 6 block for the cameras
|
|
Hcam.block<ZDim, D - 6>(0, 6) = Hcali; // ZDim x nrCal block for the cameras
|
|
Fblocks.push_back(KeyMatrix2D(this->keys_[i], Hcam));
|
|
}
|
|
E.block<ZDim, 3>(ZDim * i, 0) = Ei;
|
|
subInsert(b, bi, ZDim * i);
|
|
}
|
|
return f;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
/// Version that computes PointCov, with optional lambda parameter
|
|
double computeJacobians(std::vector<KeyMatrix2D>& Fblocks, Matrix& E,
|
|
Matrix3& PointCov, Vector& b, const Cameras& cameras, const Point3& point,
|
|
double lambda = 0.0, bool diagonalDamping = false) const {
|
|
|
|
double f = computeJacobians(Fblocks, E, b, cameras, point);
|
|
|
|
// Point covariance inv(E'*E)
|
|
Matrix3 EtE = E.transpose() * E;
|
|
|
|
if (diagonalDamping) { // diagonal of the hessian
|
|
EtE(0, 0) += lambda * EtE(0, 0);
|
|
EtE(1, 1) += lambda * EtE(1, 1);
|
|
EtE(2, 2) += lambda * EtE(2, 2);
|
|
}else{
|
|
EtE(0, 0) += lambda;
|
|
EtE(1, 1) += lambda;
|
|
EtE(2, 2) += lambda;
|
|
}
|
|
|
|
PointCov.noalias() = (EtE).inverse();
|
|
|
|
return f;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
// TODO, there should not be a Matrix version, really
|
|
double computeJacobians(Matrix& F, Matrix& E, Matrix3& PointCov, Vector& b,
|
|
const Cameras& cameras, const Point3& point,
|
|
const double lambda = 0.0) const {
|
|
|
|
size_t numKeys = this->keys_.size();
|
|
std::vector<KeyMatrix2D> Fblocks;
|
|
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point,
|
|
lambda);
|
|
F = zeros(This::ZDim * numKeys, D * numKeys);
|
|
|
|
for (size_t i = 0; i < this->keys_.size(); ++i) {
|
|
F.block<This::ZDim, D>(This::ZDim * i, D * i) = Fblocks.at(i).second; // ZDim x 6 block for the cameras
|
|
}
|
|
return f;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
/// SVD version
|
|
double computeJacobiansSVD(std::vector<KeyMatrix2D>& Fblocks, Matrix& Enull,
|
|
Vector& b, const Cameras& cameras, const Point3& point, double lambda =
|
|
0.0, bool diagonalDamping = false) const {
|
|
|
|
Matrix E;
|
|
Matrix3 PointCov; // useless
|
|
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
|
diagonalDamping); // diagonalDamping should have no effect (only on PointCov)
|
|
|
|
// Do SVD on A
|
|
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
|
|
Vector s = svd.singularValues();
|
|
// Enull = zeros(ZDim * numKeys, ZDim * numKeys - 3);
|
|
size_t numKeys = this->keys_.size();
|
|
Enull = svd.matrixU().block(0, 3, ZDim * numKeys, ZDim * numKeys - 3); // last ZDimm-3 columns
|
|
|
|
return f;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
/// Matrix version of SVD
|
|
// TODO, there should not be a Matrix version, really
|
|
double computeJacobiansSVD(Matrix& F, Matrix& Enull, Vector& b,
|
|
const Cameras& cameras, const Point3& point) const {
|
|
|
|
int numKeys = this->keys_.size();
|
|
std::vector<KeyMatrix2D> Fblocks;
|
|
double f = computeJacobiansSVD(Fblocks, Enull, b, cameras, point);
|
|
F.resize(ZDim * numKeys, D * numKeys);
|
|
F.setZero();
|
|
|
|
for (size_t i = 0; i < this->keys_.size(); ++i)
|
|
F.block<ZDim, D>(ZDim * i, D * i) = Fblocks.at(i).second; // ZDim x 6 block for the cameras
|
|
|
|
return f;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
|
boost::shared_ptr<RegularHessianFactor<D> > createHessianFactor(
|
|
const Cameras& cameras, const Point3& point, const double lambda = 0.0,
|
|
bool diagonalDamping = false) const {
|
|
|
|
int numKeys = this->keys_.size();
|
|
|
|
std::vector<KeyMatrix2D> Fblocks;
|
|
Matrix E;
|
|
Matrix3 PointCov;
|
|
Vector b;
|
|
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
|
diagonalDamping);
|
|
|
|
//#define HESSIAN_BLOCKS // slower, as internally the Hessian factor will transform the blocks into SymmetricBlockMatrix
|
|
#ifdef HESSIAN_BLOCKS
|
|
// Create structures for Hessian Factors
|
|
std::vector < Matrix > Gs(numKeys * (numKeys + 1) / 2);
|
|
std::vector < Vector > gs(numKeys);
|
|
|
|
sparseSchurComplement(Fblocks, E, PointCov, b, Gs, gs);
|
|
// schurComplement(Fblocks, E, PointCov, b, Gs, gs);
|
|
|
|
//std::vector < Matrix > Gs2(Gs.begin(), Gs.end());
|
|
//std::vector < Vector > gs2(gs.begin(), gs.end());
|
|
|
|
return boost::make_shared < RegularHessianFactor<D>
|
|
> (this->keys_, Gs, gs, f);
|
|
#else // we create directly a SymmetricBlockMatrix
|
|
size_t n1 = D * numKeys + 1;
|
|
std::vector<DenseIndex> dims(numKeys + 1); // this also includes the b term
|
|
std::fill(dims.begin(), dims.end() - 1, D);
|
|
dims.back() = 1;
|
|
|
|
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(n1, n1)); // for 10 cameras, size should be (10*D+1 x 10*D+1)
|
|
sparseSchurComplement(Fblocks, E, PointCov, b, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
|
|
augmentedHessian(numKeys, numKeys)(0, 0) = f;
|
|
return boost::make_shared<RegularHessianFactor<D> >(this->keys_,
|
|
augmentedHessian);
|
|
#endif
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
// slow version - works on full (sparse) matrices
|
|
void schurComplement(const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
|
|
const Matrix& PointCov, const Vector& b,
|
|
/*output ->*/std::vector<Matrix>& Gs, std::vector<Vector>& gs) const {
|
|
// Schur complement trick
|
|
// Gs = F' * F - F' * E * inv(E'*E) * E' * F
|
|
// gs = F' * (b - E * inv(E'*E) * E' * b)
|
|
// This version uses full matrices
|
|
|
|
int numKeys = this->keys_.size();
|
|
|
|
/// Compute Full F ????
|
|
Matrix F = zeros(ZDim * numKeys, D * numKeys);
|
|
for (size_t i = 0; i < this->keys_.size(); ++i)
|
|
F.block<ZDim, D>(ZDim * i, D * i) = Fblocks.at(i).second; // ZDim x 6 block for the cameras
|
|
|
|
Matrix H(D * numKeys, D * numKeys);
|
|
Vector gs_vector;
|
|
|
|
H.noalias() = F.transpose() * (F - (E * (PointCov * (E.transpose() * F))));
|
|
gs_vector.noalias() = F.transpose()
|
|
* (b - (E * (PointCov * (E.transpose() * b))));
|
|
|
|
// Populate Gs and gs
|
|
int GsCount2 = 0;
|
|
for (DenseIndex i1 = 0; i1 < numKeys; i1++) { // for each camera
|
|
DenseIndex i1D = i1 * D;
|
|
gs.at(i1) = gs_vector.segment<D>(i1D);
|
|
for (DenseIndex i2 = 0; i2 < numKeys; i2++) {
|
|
if (i2 >= i1) {
|
|
Gs.at(GsCount2) = H.block<D, D>(i1D, i2 * D);
|
|
GsCount2++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
|
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
|
|
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
|
|
// Schur complement trick
|
|
// Gs = F' * F - F' * E * P * E' * F
|
|
// gs = F' * (b - E * P * E' * b)
|
|
|
|
// a single point is observed in numKeys cameras
|
|
size_t numKeys = this->keys_.size();
|
|
|
|
// Blockwise Schur complement
|
|
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
|
|
|
|
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
|
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
|
|
|
|
// D = (Dx2) * (2)
|
|
// (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
|
|
augmentedHessian(i1, numKeys) = Fi1.transpose() * b.segment<ZDim>(ZDim * i1) // F' * b
|
|
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
|
|
|
|
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
|
augmentedHessian(i1, i1) = Fi1.transpose()
|
|
* (Fi1 - Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1);
|
|
|
|
// upper triangular part of the hessian
|
|
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
|
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
|
|
|
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
|
augmentedHessian(i1, i2) = -Fi1.transpose()
|
|
* (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
|
|
}
|
|
} // end of for over cameras
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
|
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
|
|
/*output ->*/std::vector<Matrix>& Gs, std::vector<Vector>& gs) const {
|
|
// Schur complement trick
|
|
// Gs = F' * F - F' * E * P * E' * F
|
|
// gs = F' * (b - E * P * E' * b)
|
|
|
|
// a single point is observed in numKeys cameras
|
|
size_t numKeys = this->keys_.size();
|
|
|
|
int GsIndex = 0;
|
|
// Blockwise Schur complement
|
|
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
|
|
// GsIndex points to the upper triangular blocks
|
|
// 0 1 2 3 4
|
|
// X 5 6 7 8
|
|
// X X 9 10 11
|
|
// X X X 12 13
|
|
// X X X X 14
|
|
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
|
|
|
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
|
|
|
|
{ // for i1 = i2
|
|
// D = (Dx2) * (2)
|
|
gs.at(i1) = Fi1.transpose() * b.segment<ZDim>(ZDim * i1) // F' * b
|
|
-Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
|
|
|
|
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
|
Gs.at(GsIndex) = Fi1.transpose()
|
|
* (Fi1 - Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1);
|
|
GsIndex++;
|
|
}
|
|
// upper triangular part of the hessian
|
|
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
|
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
|
|
|
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
|
Gs.at(GsIndex) = -Fi1.transpose()
|
|
* (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
|
|
GsIndex++;
|
|
}
|
|
} // end of for over cameras
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
void updateAugmentedHessian(const Cameras& cameras, const Point3& point,
|
|
const double lambda, bool diagonalDamping,
|
|
SymmetricBlockMatrix& augmentedHessian,
|
|
const FastVector<Key> allKeys) const {
|
|
|
|
// int numKeys = this->keys_.size();
|
|
|
|
std::vector<KeyMatrix2D> Fblocks;
|
|
Matrix E;
|
|
Matrix3 PointCov;
|
|
Vector b;
|
|
double f = computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
|
diagonalDamping);
|
|
|
|
updateSparseSchurComplement(Fblocks, E, PointCov, b, f, allKeys, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
void updateSparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
|
const Matrix& E, const Matrix& P /*Point Covariance*/, const Vector& b,
|
|
const double f, const FastVector<Key> allKeys,
|
|
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
|
|
// Schur complement trick
|
|
// Gs = F' * F - F' * E * P * E' * F
|
|
// gs = F' * (b - E * P * E' * b)
|
|
|
|
MatrixDD matrixBlock;
|
|
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
|
|
|
|
FastMap<Key,size_t> KeySlotMap;
|
|
for (size_t slot=0; slot < allKeys.size(); slot++)
|
|
KeySlotMap.insert(std::make_pair(allKeys[slot],slot));
|
|
|
|
// a single point is observed in numKeys cameras
|
|
size_t numKeys = this->keys_.size(); // cameras observing current point
|
|
size_t aug_numKeys = (augmentedHessian.rows() - 1) / D; // all cameras in the group
|
|
|
|
// Blockwise Schur complement
|
|
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera in the current factor
|
|
|
|
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
|
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
|
|
|
|
// D = (DxZDim) * (ZDim)
|
|
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
|
|
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
|
|
// Key cameraKey_i1 = this->keys_[i1];
|
|
DenseIndex aug_i1 = KeySlotMap[this->keys_[i1]];
|
|
|
|
// information vector - store previous vector
|
|
// vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal();
|
|
// add contribution of current factor
|
|
augmentedHessian(aug_i1, aug_numKeys) = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal()
|
|
+ Fi1.transpose() * b.segment<ZDim>(ZDim * i1) // F' * b
|
|
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
|
|
|
|
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
|
// main block diagonal - store previous block
|
|
matrixBlock = augmentedHessian(aug_i1, aug_i1);
|
|
// add contribution of current factor
|
|
augmentedHessian(aug_i1, aug_i1) = matrixBlock +
|
|
( Fi1.transpose() * (Fi1 - Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1) );
|
|
|
|
// upper triangular part of the hessian
|
|
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
|
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
|
|
|
//Key cameraKey_i2 = this->keys_[i2];
|
|
DenseIndex aug_i2 = KeySlotMap[this->keys_[i2]];
|
|
|
|
// (DxD) = (DxZDim) * ( (ZDimxZDim) * (ZDimxD) )
|
|
// off diagonal block - store previous block
|
|
// matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
|
|
// add contribution of current factor
|
|
augmentedHessian(aug_i1, aug_i2) = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal()
|
|
- Fi1.transpose() * (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
|
|
}
|
|
} // end of for over cameras
|
|
|
|
augmentedHessian(aug_numKeys, aug_numKeys)(0, 0) += f;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
boost::shared_ptr<RegularImplicitSchurFactor<D> > createRegularImplicitSchurFactor(
|
|
const Cameras& cameras, const Point3& point, double lambda = 0.0,
|
|
bool diagonalDamping = false) const {
|
|
typename boost::shared_ptr<RegularImplicitSchurFactor<D> > f(
|
|
new RegularImplicitSchurFactor<D>());
|
|
computeJacobians(f->Fblocks(), f->E(), f->PointCovariance(), f->b(),
|
|
cameras, point, lambda, diagonalDamping);
|
|
f->initKeys();
|
|
return f;
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
boost::shared_ptr<JacobianFactorQ<D, ZDim> > createJacobianQFactor(
|
|
const Cameras& cameras, const Point3& point, double lambda = 0.0,
|
|
bool diagonalDamping = false) const {
|
|
std::vector<KeyMatrix2D> Fblocks;
|
|
Matrix E;
|
|
Matrix3 PointCov;
|
|
Vector b;
|
|
computeJacobians(Fblocks, E, PointCov, b, cameras, point, lambda,
|
|
diagonalDamping);
|
|
return boost::make_shared<JacobianFactorQ<D, ZDim> >(Fblocks, E, PointCov, b);
|
|
}
|
|
|
|
// ****************************************************************************************************
|
|
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
|
|
const Cameras& cameras, const Point3& point, double lambda = 0.0) const {
|
|
size_t numKeys = this->keys_.size();
|
|
std::vector<KeyMatrix2D> Fblocks;
|
|
Vector b;
|
|
Matrix Enull(ZDim*numKeys, ZDim*numKeys-3);
|
|
computeJacobiansSVD(Fblocks, Enull, b, cameras, point, lambda);
|
|
return boost::make_shared< JacobianFactorSVD<6, ZDim> >(Fblocks, Enull, b);
|
|
}
|
|
|
|
private:
|
|
|
|
/// Serialization function
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int version) {
|
|
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
|
ar & BOOST_SERIALIZATION_NVP(measured_);
|
|
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
|
}
|
|
};
|
|
|
|
template<class POSE, class Z, class CAMERA, size_t D>
|
|
const int SmartFactorBase<POSE, Z, CAMERA, D>::ZDim;
|
|
|
|
} // \ namespace gtsam
|