676 lines
25 KiB
C++
676 lines
25 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file ConcurrentBatchSmoother.cpp
|
|
* @brief A Levenberg-Marquardt Batch Smoother that implements the
|
|
* Concurrent Filtering and Smoothing interface.
|
|
* @author Stephen Williams
|
|
*/
|
|
|
|
#include <gtsam_unstable/nonlinear/ConcurrentBatchSmoother.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
#include <gtsam/linear/GaussianJunctionTree.h>
|
|
#include <gtsam/base/timing.h>
|
|
#include <gtsam/base/debug.h>
|
|
|
|
namespace gtsam {
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
|
|
std::cout << s;
|
|
std::cout << " Factors:" << std::endl;
|
|
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, factors_) {
|
|
PrintNonlinearFactor(factor, " ", keyFormatter);
|
|
}
|
|
theta_.print("Values:\n");
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
bool ConcurrentBatchSmoother::equals(const ConcurrentSmoother& rhs, double tol) const {
|
|
const ConcurrentBatchSmoother* smoother = dynamic_cast<const ConcurrentBatchSmoother*>(&rhs);
|
|
return smoother
|
|
&& factors_.equals(smoother->factors_)
|
|
&& theta_.equals(smoother->theta_)
|
|
&& ordering_.equals(smoother->ordering_)
|
|
&& delta_.equals(smoother->delta_)
|
|
&& separatorValues_.equals(smoother->separatorValues_);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
ConcurrentBatchSmoother::Result ConcurrentBatchSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta) {
|
|
|
|
gttic(update);
|
|
|
|
// Create the return result meta-data
|
|
Result result;
|
|
|
|
// Update all of the internal variables with the new information
|
|
gttic(augment_system);
|
|
{
|
|
// Add the new variables to theta
|
|
theta_.insert(newTheta);
|
|
// Add new variables to the end of the ordering
|
|
std::vector<size_t> dims;
|
|
dims.reserve(newTheta.size());
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, newTheta) {
|
|
ordering_.push_back(key_value.key);
|
|
dims.push_back(key_value.value.dim());
|
|
}
|
|
// Augment Delta
|
|
delta_.append(dims);
|
|
for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
|
|
delta_[i].setZero();
|
|
}
|
|
// Add the new factors to the graph, updating the variable index
|
|
insertFactors(newFactors);
|
|
}
|
|
gttoc(augment_system);
|
|
|
|
// Reorder the system to ensure efficient optimization (and marginalization) performance
|
|
gttic(reorder);
|
|
reorder();
|
|
gttoc(reorder);
|
|
|
|
// Optimize the factors using a modified version of L-M
|
|
gttic(optimize);
|
|
if(factors_.size() > 0) {
|
|
result = optimize();
|
|
}
|
|
gttoc(optimize);
|
|
|
|
|
|
// Moved presync code into the update function. Generally, only one call to smoother.update(*) is performed
|
|
// between synchronizations, so no extra work is being done. This also allows the presync code to be performed
|
|
// while the filter is still running (instead of during the synchronization when the filter is paused)
|
|
gttic(presync);
|
|
if(separatorValues_.size() > 0) {
|
|
updateSmootherSummarization();
|
|
}
|
|
gttoc(presync);
|
|
|
|
gttoc(update);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::presync() {
|
|
|
|
gttic(presync);
|
|
|
|
gttoc(presync);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::getSummarizedFactors(NonlinearFactorGraph& summarizedFactors) {
|
|
|
|
gttic(get_summarized_factors);
|
|
|
|
// Copy the previous calculated smoother summarization factors into the output
|
|
summarizedFactors.push_back(smootherSummarization_);
|
|
|
|
gttoc(get_summarized_factors);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::synchronize(const NonlinearFactorGraph& smootherFactors, const Values& smootherValues,
|
|
const NonlinearFactorGraph& summarizedFactors, const Values& separatorValues) {
|
|
|
|
gttic(synchronize);
|
|
|
|
// Remove the previous filter summarization from the graph
|
|
removeFactors(filterSummarizationSlots_);
|
|
|
|
// Insert new linpoints into the values, augment the ordering, and store new dims to augment delta
|
|
std::vector<size_t> dims;
|
|
dims.reserve(smootherValues.size() + separatorValues.size());
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, smootherValues) {
|
|
Values::iterator iter = theta_.find(key_value.key);
|
|
if(iter == theta_.end()) {
|
|
theta_.insert(key_value.key, key_value.value);
|
|
ordering_.push_back(key_value.key);
|
|
dims.push_back(key_value.value.dim());
|
|
} else {
|
|
iter->value = key_value.value;
|
|
}
|
|
}
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues) {
|
|
Values::iterator iter = theta_.find(key_value.key);
|
|
if(iter == theta_.end()) {
|
|
theta_.insert(key_value.key, key_value.value);
|
|
ordering_.push_back(key_value.key);
|
|
dims.push_back(key_value.value.dim());
|
|
} else {
|
|
iter->value = key_value.value;
|
|
}
|
|
}
|
|
|
|
// Augment Delta
|
|
delta_.append(dims);
|
|
for(size_t i = delta_.size() - dims.size(); i < delta_.size(); ++i) {
|
|
delta_[i].setZero();
|
|
}
|
|
|
|
// Insert the new smoother factors
|
|
insertFactors(smootherFactors);
|
|
|
|
// Insert the new filter summarized factors
|
|
filterSummarizationSlots_ = insertFactors(summarizedFactors);
|
|
|
|
// Update the list of root keys
|
|
separatorValues_ = separatorValues;
|
|
|
|
gttoc(synchronize);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::postsync() {
|
|
|
|
gttic(postsync);
|
|
|
|
gttoc(postsync);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::vector<size_t> ConcurrentBatchSmoother::insertFactors(const NonlinearFactorGraph& factors) {
|
|
|
|
gttic(insert_factors);
|
|
|
|
// create the output vector
|
|
std::vector<size_t> slots;
|
|
slots.reserve(factors.size());
|
|
|
|
// Insert the factor into an existing hole in the factor graph, if possible
|
|
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, factors) {
|
|
size_t slot;
|
|
if(availableSlots_.size() > 0) {
|
|
slot = availableSlots_.front();
|
|
availableSlots_.pop();
|
|
factors_.replace(slot, factor);
|
|
} else {
|
|
slot = factors_.size();
|
|
factors_.push_back(factor);
|
|
}
|
|
slots.push_back(slot);
|
|
}
|
|
|
|
gttoc(insert_factors);
|
|
|
|
return slots;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::removeFactors(const std::vector<size_t>& slots) {
|
|
|
|
gttic(remove_factors);
|
|
|
|
// For each factor slot to delete...
|
|
SymbolicFactorGraph factors;
|
|
BOOST_FOREACH(size_t slot, slots) {
|
|
// Create a symbolic version for the variable index
|
|
factors.push_back(factors_.at(slot)->symbolic(ordering_));
|
|
|
|
// Remove the factor from the graph
|
|
factors_.remove(slot);
|
|
|
|
// Mark the factor slot as available
|
|
availableSlots_.push(slot);
|
|
}
|
|
|
|
gttoc(remove_factors);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::reorder() {
|
|
|
|
// Recalculate the variable index
|
|
variableIndex_ = VariableIndex(*factors_.symbolic(ordering_));
|
|
|
|
// Initialize all variables to group0
|
|
std::vector<int> cmember(variableIndex_.size(), 0);
|
|
|
|
// Set all of the separator keys to Group1
|
|
if(separatorValues_.size() > 0) {
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
|
|
cmember[ordering_.at(key_value.key)] = 1;
|
|
}
|
|
}
|
|
|
|
// Generate the permutation
|
|
Permutation forwardPermutation = *inference::PermutationCOLAMD_(variableIndex_, cmember);
|
|
|
|
// Permute the ordering, variable index, and deltas
|
|
ordering_.permuteInPlace(forwardPermutation);
|
|
variableIndex_.permuteInPlace(forwardPermutation);
|
|
delta_.permuteInPlace(forwardPermutation);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
ConcurrentBatchSmoother::Result ConcurrentBatchSmoother::optimize() {
|
|
|
|
// Create output result structure
|
|
Result result;
|
|
result.nonlinearVariables = theta_.size() - separatorValues_.size();
|
|
result.linearVariables = separatorValues_.size();
|
|
|
|
// Set optimization parameters
|
|
double lambda = parameters_.lambdaInitial;
|
|
double lambdaFactor = parameters_.lambdaFactor;
|
|
double lambdaUpperBound = parameters_.lambdaUpperBound;
|
|
double lambdaLowerBound = 0.5 / parameters_.lambdaUpperBound;
|
|
size_t maxIterations = parameters_.maxIterations;
|
|
double relativeErrorTol = parameters_.relativeErrorTol;
|
|
double absoluteErrorTol = parameters_.absoluteErrorTol;
|
|
double errorTol = parameters_.errorTol;
|
|
|
|
// Create a Values that holds the current evaluation point
|
|
Values evalpoint = theta_.retract(delta_, ordering_);
|
|
result.error = factors_.error(evalpoint);
|
|
|
|
// Use a custom optimization loop so the linearization points can be controlled
|
|
double previousError;
|
|
VectorValues newDelta;
|
|
do {
|
|
previousError = result.error;
|
|
|
|
// Do next iteration
|
|
gttic(optimizer_iteration);
|
|
{
|
|
// Linearize graph around the linearization point
|
|
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
|
|
|
|
// Keep increasing lambda until we make make progress
|
|
while(true) {
|
|
// Add prior factors at the current solution
|
|
gttic(damp);
|
|
GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
|
|
dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
|
|
{
|
|
// for each of the variables, add a prior at the current solution
|
|
for(size_t j=0; j<delta_.size(); ++j) {
|
|
Matrix A = lambda * eye(delta_[j].size());
|
|
Vector b = lambda * delta_[j];
|
|
SharedDiagonal model = noiseModel::Unit::Create(delta_[j].size());
|
|
GaussianFactor::shared_ptr prior(new JacobianFactor(j, A, b, model));
|
|
dampedFactorGraph.push_back(prior);
|
|
}
|
|
}
|
|
gttoc(damp);
|
|
result.lambdas++;
|
|
|
|
gttic(solve);
|
|
// Solve Damped Gaussian Factor Graph
|
|
newDelta = GaussianJunctionTree(dampedFactorGraph).optimize(parameters_.getEliminationFunction());
|
|
// update the evalpoint with the new delta
|
|
evalpoint = theta_.retract(newDelta, ordering_);
|
|
gttoc(solve);
|
|
|
|
// Evaluate the new error
|
|
gttic(compute_error);
|
|
double error = factors_.error(evalpoint);
|
|
gttoc(compute_error);
|
|
|
|
if(error < result.error) {
|
|
// Keep this change
|
|
// Update the error value
|
|
result.error = error;
|
|
// Update the linearization point
|
|
theta_ = evalpoint;
|
|
// Reset the deltas to zeros
|
|
delta_.setZero();
|
|
// Put the linearization points and deltas back for specific variables
|
|
if(separatorValues_.size() > 0) {
|
|
theta_.update(separatorValues_);
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
|
|
Index index = ordering_.at(key_value.key);
|
|
delta_.at(index) = newDelta.at(index);
|
|
}
|
|
}
|
|
// Decrease lambda for next time
|
|
lambda /= lambdaFactor;
|
|
if(lambda < lambdaLowerBound) {
|
|
lambda = lambdaLowerBound;
|
|
}
|
|
// End this lambda search iteration
|
|
break;
|
|
} else {
|
|
// Reject this change
|
|
// Increase lambda and continue searching
|
|
lambda *= lambdaFactor;
|
|
if(lambda > lambdaUpperBound) {
|
|
// The maximum lambda has been used. Print a warning and end the search.
|
|
std::cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl;
|
|
break;
|
|
}
|
|
}
|
|
} // end while
|
|
}
|
|
gttoc(optimizer_iteration);
|
|
|
|
result.iterations++;
|
|
} while(result.iterations < maxIterations &&
|
|
!checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT));
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::updateSmootherSummarization() {
|
|
|
|
// The smoother summarization factors are the resulting marginal factors on the separator
|
|
// variables that result from marginalizing out all of the other variables
|
|
// These marginal factors will be cached for later transmission to the filter using
|
|
// linear container factors
|
|
// Note: This assumes the ordering already has the separator variables eliminated last
|
|
|
|
// Clear out any existing smoother summarized factors
|
|
smootherSummarization_.resize(0);
|
|
|
|
// Create the linear factor graph
|
|
gtsam::GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_, ordering_);
|
|
|
|
// Construct an elimination tree to perform sparse elimination
|
|
std::vector<EliminationForest::shared_ptr> forest( EliminationForest::Create(linearFactorGraph, variableIndex_) );
|
|
|
|
// This is a forest. Only the top-most node/index of each tree needs to be eliminated; all of the children will be eliminated automatically
|
|
// Find the subset of nodes/keys that must be eliminated
|
|
std::set<gtsam::Index> indicesToEliminate;
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, theta_) {
|
|
indicesToEliminate.insert(ordering_.at(key_value.key));
|
|
}
|
|
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, separatorValues_) {
|
|
indicesToEliminate.erase(ordering_.at(key_value.key));
|
|
}
|
|
std::vector<Index> indices(indicesToEliminate.begin(), indicesToEliminate.end());
|
|
BOOST_FOREACH(Index index, indices) {
|
|
EliminationForest::removeChildrenIndices(indicesToEliminate, forest.at(index));
|
|
}
|
|
|
|
// Eliminate each top-most key, returning a Gaussian Factor on some of the remaining variables
|
|
// Convert the marginal factors into Linear Container Factors and store
|
|
BOOST_FOREACH(gtsam::Index index, indicesToEliminate) {
|
|
GaussianFactor::shared_ptr gaussianFactor = forest.at(index)->eliminateRecursive(parameters_.getEliminationFunction());
|
|
LinearContainerFactor::shared_ptr marginalFactor(new LinearContainerFactor(gaussianFactor, ordering_, theta_));
|
|
smootherSummarization_.push_back(marginalFactor);
|
|
}
|
|
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::PrintNonlinearFactor(const NonlinearFactor::shared_ptr& factor, const std::string& indent, const KeyFormatter& keyFormatter) {
|
|
std::cout << indent;
|
|
if(factor) {
|
|
if(boost::dynamic_pointer_cast<LinearContainerFactor>(factor)) {
|
|
std::cout << "l( ";
|
|
} else {
|
|
std::cout << "f( ";
|
|
}
|
|
BOOST_FOREACH(Key key, *factor) {
|
|
std::cout << keyFormatter(key) << " ";
|
|
}
|
|
std::cout << ")" << std::endl;
|
|
} else {
|
|
std::cout << "{ NULL }" << std::endl;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::PrintLinearFactor(const GaussianFactor::shared_ptr& factor, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
|
|
std::cout << indent;
|
|
if(factor) {
|
|
std::cout << "g( ";
|
|
BOOST_FOREACH(Index index, *factor) {
|
|
std::cout << keyFormatter(ordering.key(index)) << " ";
|
|
}
|
|
std::cout << ")" << std::endl;
|
|
} else {
|
|
std::cout << "{ NULL }" << std::endl;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::vector<Index> ConcurrentBatchSmoother::EliminationForest::ComputeParents(const VariableIndex& structure) {
|
|
// Number of factors and variables
|
|
const size_t m = structure.nFactors();
|
|
const size_t n = structure.size();
|
|
|
|
static const gtsam::Index none = std::numeric_limits<gtsam::Index>::max();
|
|
|
|
// Allocate result parent vector and vector of last factor columns
|
|
std::vector<gtsam::Index> parents(n, none);
|
|
std::vector<gtsam::Index> prevCol(m, none);
|
|
|
|
// for column j \in 1 to n do
|
|
for (gtsam::Index j = 0; j < n; j++) {
|
|
// for row i \in Struct[A*j] do
|
|
BOOST_FOREACH(const size_t i, structure[j]) {
|
|
if (prevCol[i] != none) {
|
|
gtsam::Index k = prevCol[i];
|
|
// find root r of the current tree that contains k
|
|
gtsam::Index r = k;
|
|
while (parents[r] != none)
|
|
r = parents[r];
|
|
if (r != j) parents[r] = j;
|
|
}
|
|
prevCol[i] = j;
|
|
}
|
|
}
|
|
|
|
return parents;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
std::vector<ConcurrentBatchSmoother::EliminationForest::shared_ptr> ConcurrentBatchSmoother::EliminationForest::Create(const gtsam::GaussianFactorGraph& factorGraph, const gtsam::VariableIndex& structure) {
|
|
// Compute the tree structure
|
|
std::vector<gtsam::Index> parents(ComputeParents(structure));
|
|
|
|
// Number of variables
|
|
const size_t n = structure.size();
|
|
|
|
static const gtsam::Index none = std::numeric_limits<gtsam::Index>::max();
|
|
|
|
// Create tree structure
|
|
std::vector<shared_ptr> trees(n);
|
|
for (gtsam::Index k = 1; k <= n; k++) {
|
|
gtsam::Index j = n - k; // Start at the last variable and loop down to 0
|
|
trees[j].reset(new EliminationForest(j)); // Create a new node on this variable
|
|
if (parents[j] != none) // If this node has a parent, add it to the parent's children
|
|
trees[parents[j]]->add(trees[j]);
|
|
}
|
|
|
|
// Hang factors in right places
|
|
BOOST_FOREACH(const sharedFactor& factor, factorGraph) {
|
|
if(factor && factor->size() > 0) {
|
|
gtsam::Index j = *std::min_element(factor->begin(), factor->end());
|
|
if(j < structure.size())
|
|
trees[j]->add(factor);
|
|
}
|
|
}
|
|
|
|
return trees;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
ConcurrentBatchSmoother::EliminationForest::sharedFactor ConcurrentBatchSmoother::EliminationForest::eliminateRecursive(Eliminate function) {
|
|
|
|
// Create the list of factors to be eliminated, initially empty, and reserve space
|
|
gtsam::GaussianFactorGraph factors;
|
|
factors.reserve(this->factors_.size() + this->subTrees_.size());
|
|
|
|
// Add all factors associated with the current node
|
|
factors.push_back(this->factors_.begin(), this->factors_.end());
|
|
|
|
// for all subtrees, eliminate into Bayes net and a separator factor, added to [factors]
|
|
BOOST_FOREACH(const shared_ptr& child, subTrees_)
|
|
factors.push_back(child->eliminateRecursive(function));
|
|
|
|
// Combine all factors (from this node and from subtrees) into a joint factor
|
|
gtsam::GaussianFactorGraph::EliminationResult eliminated(function(factors, 1));
|
|
|
|
return eliminated.second;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
void ConcurrentBatchSmoother::EliminationForest::removeChildrenIndices(std::set<Index>& indices, const ConcurrentBatchSmoother::EliminationForest::shared_ptr& tree) {
|
|
BOOST_FOREACH(const EliminationForest::shared_ptr& child, tree->children()) {
|
|
indices.erase(child->key());
|
|
removeChildrenIndices(indices, child);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
///* ************************************************************************* */
|
|
//std::set<size_t> ConcurrentBatchSmoother::findFactorsWithAny(const std::set<Key>& keys) const {
|
|
// // Find the set of factor slots for each specified key
|
|
// std::set<size_t> factorSlots;
|
|
// BOOST_FOREACH(Key key, keys) {
|
|
// FactorIndex::const_iterator iter = factorIndex_.find(key);
|
|
// if(iter != factorIndex_.end()) {
|
|
// factorSlots.insert(iter->second.begin(), iter->second.end());
|
|
// }
|
|
// }
|
|
//
|
|
// return factorSlots;
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//std::set<size_t> ConcurrentBatchSmoother::findFactorsWithOnly(const std::set<Key>& keys) const {
|
|
// // Find the set of factor slots with any of the provided keys
|
|
// std::set<size_t> factorSlots = findFactorsWithAny(keys);
|
|
// // Test each factor for non-specified keys
|
|
// std::set<size_t>::iterator slot = factorSlots.begin();
|
|
// while(slot != factorSlots.end()) {
|
|
// const NonlinearFactor::shared_ptr& factor = graph_.at(*slot);
|
|
// std::set<Key> factorKeys(factor->begin(), factor->end()); // ensure the keys are sorted
|
|
// if(!std::includes(keys.begin(), keys.end(), factorKeys.begin(), factorKeys.end())) {
|
|
// factorSlots.erase(slot++);
|
|
// } else {
|
|
// ++slot;
|
|
// }
|
|
// }
|
|
//
|
|
// return factorSlots;
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//NonlinearFactor::shared_ptr ConcurrentBatchSmoother::marginalizeKeysFromFactor(const NonlinearFactor::shared_ptr& factor, const std::set<Key>& keysToKeep, const Values& theta) const {
|
|
//
|
|
//factor->print("Factor Before:\n");
|
|
//
|
|
// // Sort the keys for this factor
|
|
// std::set<Key> factorKeys;
|
|
// BOOST_FOREACH(Key key, *factor) {
|
|
// factorKeys.insert(key);
|
|
// }
|
|
//
|
|
// // Calculate the set of keys to marginalize
|
|
// std::set<Key> marginalizeKeys;
|
|
// std::set_difference(factorKeys.begin(), factorKeys.end(), keysToKeep.begin(), keysToKeep.end(), std::inserter(marginalizeKeys, marginalizeKeys.end()));
|
|
// std::set<Key> remainingKeys;
|
|
// std::set_intersection(factorKeys.begin(), factorKeys.end(), keysToKeep.begin(), keysToKeep.end(), std::inserter(remainingKeys, remainingKeys.end()));
|
|
//
|
|
// //
|
|
// if(marginalizeKeys.size() == 0) {
|
|
// // No keys need to be marginalized out. Simply return the original factor.
|
|
// return factor;
|
|
// } else if(marginalizeKeys.size() == factor->size()) {
|
|
// // All keys need to be marginalized out. Return an empty factor
|
|
// return NonlinearFactor::shared_ptr();
|
|
// } else {
|
|
// // (0) Create an ordering with the remaining keys last
|
|
// Ordering ordering;
|
|
// BOOST_FOREACH(Key key, marginalizeKeys) {
|
|
// ordering.push_back(key);
|
|
// }
|
|
// BOOST_FOREACH(Key key, remainingKeys) {
|
|
// ordering.push_back(key);
|
|
// }
|
|
//ordering.print("Ordering:\n");
|
|
//
|
|
// // (1) construct a linear factor graph
|
|
// GaussianFactorGraph graph;
|
|
// graph.push_back( factor->linearize(theta, ordering) );
|
|
//graph.at(0)->print("Linear Factor Before:\n");
|
|
//
|
|
// // (2) solve for the marginal factor
|
|
// // Perform partial elimination, resulting in a conditional probability ( P(MarginalizedVariable | RemainingVariables)
|
|
// // and factors on the remaining variables ( f(RemainingVariables) ). These are the factors we need to add to iSAM2
|
|
// std::vector<Index> variables;
|
|
// BOOST_FOREACH(Key key, marginalizeKeys) {
|
|
// variables.push_back(ordering.at(key));
|
|
// }
|
|
//// std::pair<GaussianFactorGraph::sharedConditional, GaussianFactorGraph> result = graph.eliminate(variables);
|
|
// GaussianFactorGraph::EliminationResult result = EliminateQR(graph, marginalizeKeys.size());
|
|
//result.first->print("Resulting Conditional:\n");
|
|
//result.second->print("Resulting Linear Factor:\n");
|
|
//// graph = result.second;
|
|
// graph.replace(0, result.second);
|
|
//
|
|
// // (3) convert the marginal factors into Linearized Factors
|
|
// NonlinearFactor::shared_ptr marginalFactor;
|
|
// assert(graph.size() <= 1);
|
|
// if(graph.size() > 0) {
|
|
//graph.at(0)->print("Linear Factor After:\n");
|
|
// marginalFactor.reset(new LinearContainerFactor(graph.at(0), ordering, theta));
|
|
// }
|
|
//marginalFactor->print("Factor After:\n");
|
|
// return marginalFactor;
|
|
// }
|
|
//}
|
|
|
|
|
|
|
|
///* ************************************************************************* */
|
|
//void ConcurrentBatchSmoother::PrintSingleClique(const ISAM2Clique::shared_ptr& clique, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
|
|
// std::cout << indent << "P( ";
|
|
// BOOST_FOREACH(Index index, clique->conditional()->frontals()){
|
|
// std::cout << keyFormatter(ordering.key(index)) << " ";
|
|
// }
|
|
// if(clique->conditional()->nrParents() > 0){
|
|
// std::cout << "| ";
|
|
// BOOST_FOREACH(Index index, clique->conditional()->parents()){
|
|
// std::cout << keyFormatter(ordering.key(index)) << " ";
|
|
// }
|
|
// }
|
|
// std::cout << ")" << std::endl;
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//void ConcurrentBatchSmoother::PrintRecursiveClique(const ISAM2Clique::shared_ptr& clique, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
|
|
//
|
|
// // Print this node
|
|
// PrintSingleClique(clique, ordering, indent, keyFormatter);
|
|
//
|
|
// // Print Children
|
|
// BOOST_FOREACH(const ISAM2Clique::shared_ptr& child, clique->children()) {
|
|
// PrintRecursiveClique(child, ordering, indent+" ", keyFormatter);
|
|
// }
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//void ConcurrentBatchSmoother::PrintBayesTree(const ISAM2& bayesTree, const Ordering& ordering, const std::string& indent, const KeyFormatter& keyFormatter) {
|
|
//
|
|
// std::cout << indent << "Bayes Tree:" << std::endl;
|
|
// if (bayesTree.root().use_count() == 0) {
|
|
// std::cout << indent << " {EMPTY}" << std::endl;
|
|
// } else {
|
|
// std::cout << indent << " clique size == " << bayesTree.size() << ", node size == " << bayesTree.nodes().size() << std::endl;
|
|
// PrintRecursiveClique(bayesTree.root(), ordering, indent+" ", keyFormatter);
|
|
// }
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
}/// namespace gtsam
|