gtsam/gtsam/slam/tests/testSmartProjectionPoseFact...

1319 lines
48 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSmartProjectionPoseFactor.cpp
* @brief Unit tests for ProjectionFactor Class
* @author Chris Beall
* @author Luca Carlone
* @author Zsolt Kira
* @author Frank Dellaert
* @date Sept 2013
*/
#include "smartFactorScenarios.h"
#include <gtsam/slam/SmartProjectionPoseFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/slam/PoseTranslationPrior.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/assign/std/map.hpp>
#include <iostream>
using namespace boost::assign;
static const double rankTol = 1.0;
static const double linThreshold = -1.0;
static const bool manageDegeneracy = true;
// Create a noise model for the pixel error
static const double sigma = 0.1;
static SharedIsotropic model(noiseModel::Isotropic::Sigma(2, sigma));
// Convenience for named keys
using symbol_shorthand::X;
using symbol_shorthand::L;
// tests data
static Symbol x1('X', 1);
static Symbol x2('X', 2);
static Symbol x3('X', 3);
static Point2 measurement1(323.0, 240.0);
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
typedef SmartProjectionPoseFactor<Cal3Bundler> SmartFactorBundler;
LevenbergMarquardtParams params;
// Make more verbose like so (in tests):
// params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
// params.verbosity = NonlinearOptimizerParams::ERROR;
/* ************************************************************************* */
TEST( SmartProjectionPoseFactor, Constructor) {
SmartFactor::shared_ptr factor1(new SmartFactor());
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactor, Constructor2) {
SmartFactor factor1(rankTol, linThreshold);
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactor, Constructor3) {
using namespace vanillaPose;
SmartFactor::shared_ptr factor1(new SmartFactor());
factor1->add(measurement1, x1, model);
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactor, Constructor4) {
using namespace vanillaPose;
SmartFactor factor1(rankTol, linThreshold);
factor1.add(measurement1, x1, model);
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactor, Equals ) {
using namespace vanillaPose;
SmartFactor::shared_ptr factor1(new SmartFactor());
factor1->add(measurement1, x1, model);
SmartFactor::shared_ptr factor2(new SmartFactor());
factor2->add(measurement1, x1, model);
CHECK(assert_equal(*factor1, *factor2));
}
/* *************************************************************************/
TEST_UNSAFE( SmartProjectionPoseFactor, noiseless ) {
// cout << " ************************ SmartProjectionPoseFactor: noisy ****************************" << endl;
using namespace vanillaPose;
// Project two landmarks into two cameras
Point2 level_uv = level_camera.project(landmark1);
Point2 level_uv_right = level_camera_right.project(landmark1);
SmartFactor factor;
factor.add(level_uv, x1, model);
factor.add(level_uv_right, x2, model);
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
double actualError = factor.error(values);
double expectedError = 0.0;
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
SmartFactor::Cameras cameras = factor.cameras(values);
double actualError2 = factor.totalReprojectionError(cameras);
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
// Calculate expected derivative for point (easiest to check)
boost::function<Vector(Point3)> f = //
boost::bind(&SmartFactor::whitenedErrors, factor, cameras, _1);
// Calculate using computeEP
Matrix actualE;
factor.triangulateAndComputeE(actualE, values);
// get point
boost::optional<Point3> point = factor.point();
CHECK(point);
// calculate numerical derivative with triangulated point
Matrix expectedE = sigma * numericalDerivative11<Vector, Point3>(f, *point);
EXPECT(assert_equal(expectedE, actualE, 1e-7));
// Calculate using reprojectionError
SmartFactor::Cameras::FBlocks F;
Matrix E;
Vector actualErrors = factor.reprojectionError(cameras, *point, F, E);
EXPECT(assert_equal(expectedE, E, 1e-7));
EXPECT(assert_equal(zero(4), actualErrors, 1e-7));
// Calculate using computeJacobians
Vector b;
vector<SmartFactor::MatrixZD> Fblocks;
double actualError3 = factor.computeJacobians(Fblocks, E, b, cameras, *point);
EXPECT(assert_equal(expectedE, E, 1e-7));
EXPECT_DOUBLES_EQUAL(expectedError, actualError3, 1e-8);
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, noisy ) {
// cout << " ************************ SmartProjectionPoseFactor: noisy ****************************" << endl;
using namespace vanillaPose;
// Project two landmarks into two cameras
Point2 pixelError(0.2, 0.2);
Point2 level_uv = level_camera.project(landmark1) + pixelError;
Point2 level_uv_right = level_camera_right.project(landmark1);
Values values;
values.insert(x1, cam1);
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
values.insert(x2, Camera(pose_right.compose(noise_pose), sharedK));
SmartFactor::shared_ptr factor(new SmartFactor());
factor->add(level_uv, x1, model);
factor->add(level_uv_right, x2, model);
double actualError1 = factor->error(values);
SmartFactor::shared_ptr factor2(new SmartFactor());
vector<Point2> measurements;
measurements.push_back(level_uv);
measurements.push_back(level_uv_right);
vector<SharedNoiseModel> noises;
noises.push_back(model);
noises.push_back(model);
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
factor2->add(measurements, views, noises);
double actualError2 = factor2->error(values);
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ) {
// cout << " ************************ SmartProjectionPoseFactor: 3 cams + 3 landmarks **********************" << endl;
using namespace vanillaPose2;
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedK2));
EXPECT(
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Camera>(x3).pose()));
Values result;
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
tictoc_finishedIteration_();
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
// VectorValues delta = GFG->optimize();
// result.print("results of 3 camera, 3 landmark optimization \n");
EXPECT(assert_equal(pose_above, result.at<Camera>(x3).pose(), 1e-8));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, Factors ) {
typedef PinholePose<Cal3_S2> Camera;
// Default cameras for simple derivatives
Rot3 R;
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(100, 100, 0, 0, 0));
Camera cam1(Pose3(R, Point3(0, 0, 0)), sharedK), cam2(
Pose3(R, Point3(1, 0, 0)), sharedK);
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
vector<Point2> measurements_cam1;
// Project 2 landmarks into 2 cameras
measurements_cam1.push_back(cam1.project(landmark1));
measurements_cam1.push_back(cam2.project(landmark1));
// Create smart factors
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
SmartFactor::shared_ptr smartFactor1 = boost::make_shared<SmartFactor>();
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::Cameras cameras;
cameras.push_back(cam1);
cameras.push_back(cam2);
// Make sure triangulation works
CHECK(smartFactor1->triangulateSafe(cameras));
CHECK(!smartFactor1->isDegenerate());
CHECK(!smartFactor1->isPointBehindCamera());
boost::optional<Point3> p = smartFactor1->point();
CHECK(p);
EXPECT(assert_equal(landmark1, *p));
// After eliminating the point, A1 and A2 contain 2-rank information on cameras:
Matrix16 A1, A2;
A1 << -10, 0, 0, 0, 1, 0;
A2 << 10, 0, 1, 0, -1, 0;
A1 *= 10. / sigma;
A2 *= 10. / sigma;
Matrix expectedInformation; // filled below
{
// createHessianFactor
Matrix66 G11 = 0.5 * A1.transpose() * A1;
Matrix66 G12 = 0.5 * A1.transpose() * A2;
Matrix66 G22 = 0.5 * A2.transpose() * A2;
Vector6 g1;
g1.setZero();
Vector6 g2;
g2.setZero();
double f = 0;
RegularHessianFactor<6> expected(x1, x2, G11, G12, g1, G22, g2, f);
expectedInformation = expected.information();
boost::shared_ptr<RegularHessianFactor<6> > actual =
smartFactor1->createHessianFactor(cameras, 0.0);
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-8));
EXPECT(assert_equal(expected, *actual, 1e-8));
}
{
Matrix26 F1;
F1.setZero();
F1(0, 1) = -100;
F1(0, 3) = -10;
F1(1, 0) = 100;
F1(1, 4) = -10;
Matrix26 F2;
F2.setZero();
F2(0, 1) = -101;
F2(0, 3) = -10;
F2(0, 5) = -1;
F2(1, 0) = 100;
F2(1, 2) = 10;
F2(1, 4) = -10;
Matrix E(4, 3);
E.setZero();
E(0, 0) = 10;
E(1, 1) = 10;
E(2, 0) = 10;
E(2, 2) = 1;
E(3, 1) = 10;
vector<Matrix26> Fblocks = list_of<Matrix>(F1)(F2);
Vector b(4);
b.setZero();
// Create smart factors
FastVector<Key> keys;
keys.push_back(x1);
keys.push_back(x2);
// createJacobianQFactor
SharedIsotropic n = noiseModel::Isotropic::Sigma(4, sigma);
Matrix3 P = (E.transpose() * E).inverse();
JacobianFactorQ<6, 2> expectedQ(keys, Fblocks, E, P, b, n);
EXPECT(assert_equal(expectedInformation, expectedQ.information(), 1e-8));
boost::shared_ptr<JacobianFactorQ<6, 2> > actualQ =
smartFactor1->createJacobianQFactor(cameras, 0.0);
CHECK(actualQ);
EXPECT(assert_equal(expectedInformation, actualQ->information(), 1e-8));
EXPECT(assert_equal(expectedQ, *actualQ));
// Whiten for RegularImplicitSchurFactor (does not have noise model)
model->WhitenSystem(E, b);
Matrix3 whiteP = (E.transpose() * E).inverse();
Fblocks[0] = model->Whiten(Fblocks[0]);
Fblocks[1] = model->Whiten(Fblocks[1]);
// createRegularImplicitSchurFactor
RegularImplicitSchurFactor<Camera> expected(keys, Fblocks, E, whiteP, b);
boost::shared_ptr<RegularImplicitSchurFactor<Camera> > actual =
smartFactor1->createRegularImplicitSchurFactor(cameras, 0.0);
CHECK(actual);
EXPECT(assert_equal(expectedInformation, expected.information(), 1e-8));
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-8));
EXPECT(assert_equal(expected, *actual));
}
{
// createJacobianSVDFactor
Vector1 b;
b.setZero();
double s = sigma * sin(M_PI_4);
SharedIsotropic n = noiseModel::Isotropic::Sigma(4 - 3, sigma);
JacobianFactor expected(x1, s * A1, x2, s * A2, b, n);
EXPECT(assert_equal(expectedInformation, expected.information(), 1e-8));
boost::shared_ptr<JacobianFactor> actual =
smartFactor1->createJacobianSVDFactor(cameras, 0.0);
CHECK(actual);
EXPECT(assert_equal(expectedInformation, actual->information(), 1e-8));
EXPECT(assert_equal(expected, *actual));
}
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ) {
// cout << " ************************ SmartProjectionPoseFactor: 3 cams + 3 landmarks **********************" << endl;
using namespace vanillaPose;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
EXPECT(
assert_equal(
Pose3(
Rot3(1.11022302e-16, -0.0314107591, 0.99950656, -0.99950656,
-0.0313952598, -0.000986635786, 0.0314107591, -0.999013364,
-0.0313952598), Point3(0.1, -0.1, 1.9)),
values.at<Camera>(x3).pose()));
Values result;
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
tictoc_finishedIteration_();
// result.print("results of 3 camera, 3 landmark optimization \n");
EXPECT(assert_equal(pose_above, result.at<Camera>(x3).pose(), 1e-7));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, jacobianSVD ) {
using namespace vanillaPose;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
SmartFactor::shared_ptr smartFactor1(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD));
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD));
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD));
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Camera>(x3).pose(), 1e-8));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, landmarkDistance ) {
using namespace vanillaPose;
double excludeLandmarksFutherThanDist = 2;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
SmartFactor::shared_ptr smartFactor1(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD,
excludeLandmarksFutherThanDist));
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD,
excludeLandmarksFutherThanDist));
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD,
excludeLandmarksFutherThanDist));
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
// All factors are disabled and pose should remain where it is
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(values.at<Camera>(x3), result.at<Camera>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, dynamicOutlierRejection ) {
using namespace vanillaPose;
double excludeLandmarksFutherThanDist = 1e10;
double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// add fourth landmark
Point3 landmark4(5, -0.5, 1);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3,
measurements_cam4;
// Project 4 landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
measurements_cam4.at(0) = measurements_cam4.at(0) + Point2(10, 10); // add outlier
SmartFactor::shared_ptr smartFactor1(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD,
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD,
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD,
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor3->add(measurements_cam3, views, model);
SmartFactor::shared_ptr smartFactor4(
new SmartFactor(1, -1, false, false, JACOBIAN_SVD,
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
smartFactor4->add(measurements_cam4, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(smartFactor4);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, cam3);
// All factors are disabled and pose should remain where it is
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(cam3, result.at<Camera>(x3)));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, jacobianQ ) {
using namespace vanillaPose;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
SmartFactor::shared_ptr smartFactor1(
new SmartFactor(1, -1, false, false, JACOBIAN_Q));
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(
new SmartFactor(1, -1, false, false, JACOBIAN_Q));
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(
new SmartFactor(1, -1, false, false, JACOBIAN_Q));
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
EXPECT(assert_equal(pose_above, result.at<Camera>(x3).pose(), 1e-8));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, 3poses_projection_factor ) {
// cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
using namespace vanillaPose2;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
typedef GenericProjectionFactor<Pose3, Point3> ProjectionFactor;
NonlinearFactorGraph graph;
// Project three landmarks into three cameras
graph.push_back(
ProjectionFactor(cam1.project(landmark1), model, x1, L(1), sharedK2));
graph.push_back(
ProjectionFactor(cam2.project(landmark1), model, x2, L(1), sharedK2));
graph.push_back(
ProjectionFactor(cam3.project(landmark1), model, x3, L(1), sharedK2));
graph.push_back(
ProjectionFactor(cam1.project(landmark2), model, x1, L(2), sharedK2));
graph.push_back(
ProjectionFactor(cam2.project(landmark2), model, x2, L(2), sharedK2));
graph.push_back(
ProjectionFactor(cam3.project(landmark2), model, x3, L(2), sharedK2));
graph.push_back(
ProjectionFactor(cam1.project(landmark3), model, x1, L(3), sharedK2));
graph.push_back(
ProjectionFactor(cam2.project(landmark3), model, x2, L(3), sharedK2));
graph.push_back(
ProjectionFactor(cam3.project(landmark3), model, x3, L(3), sharedK2));
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
graph.push_back(PriorFactor<Pose3>(x1, level_pose, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose_right, noisePrior));
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
Values values;
values.insert(x1, level_pose);
values.insert(x2, pose_right);
values.insert(x3, pose_above * noise_pose);
values.insert(L(1), landmark1);
values.insert(L(2), landmark2);
values.insert(L(3), landmark3);
DOUBLES_EQUAL(48406055, graph.error(values), 1);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
Values result = optimizer.optimize();
DOUBLES_EQUAL(0, graph.error(result), 1e-9);
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, CheckHessian) {
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
using namespace vanillaPose;
// Two slightly different cameras
Pose3 pose2 = level_pose
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Camera cam2(pose2, sharedK);
Camera cam3(pose3, sharedK);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
double rankTol = 10;
SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol));
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol));
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(new SmartFactor(rankTol));
smartFactor3->add(measurements_cam3, views, model);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose3 * noise_pose, sharedK));
EXPECT(
assert_equal(
Pose3(
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
Point3(0.0897734171, -0.110201006, 0.901022872)),
values.at<Camera>(x3).pose()));
boost::shared_ptr<GaussianFactor> factor1 = smartFactor1->linearize(values);
boost::shared_ptr<GaussianFactor> factor2 = smartFactor2->linearize(values);
boost::shared_ptr<GaussianFactor> factor3 = smartFactor3->linearize(values);
Matrix CumulativeInformation = factor1->information() + factor2->information()
+ factor3->information();
boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
values);
Matrix GraphInformation = GaussianGraph->hessian().first;
// Check Hessian
EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8));
Matrix AugInformationMatrix = factor1->augmentedInformation()
+ factor2->augmentedInformation() + factor3->augmentedInformation();
// Check Information vector
// cout << AugInformationMatrix.size() << endl;
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
// Check Hessian
EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ) {
// cout << " ************************ SmartProjectionPoseFactor: 3 cams + 2 landmarks: Rotation Only**********************" << endl;
using namespace vanillaPose2;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// Two different cameras
Pose3 pose2 = level_pose * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3());
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3());
Camera cam2(pose2, sharedK2);
Camera cam3(pose3, sharedK2);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
double rankTol = 50;
SmartFactor::shared_ptr smartFactor1(
new SmartFactor(rankTol, linThreshold, manageDegeneracy));
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(
new SmartFactor(rankTol, linThreshold, manageDegeneracy));
smartFactor2->add(measurements_cam2, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3,
0.10);
Point3 positionPrior = Point3(0, 0, 1);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(
PoseTranslationPrior<Camera>(x2, positionPrior, noisePriorTranslation));
graph.push_back(
PoseTranslationPrior<Camera>(x3, positionPrior, noisePriorTranslation));
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, Camera(pose2 * noise_pose, sharedK2));
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose3 * noise_pose * noise_pose, sharedK2));
EXPECT(
assert_equal(
Pose3(
Rot3(0.154256096, -0.632754061, 0.75883289, -0.753276814,
-0.572308662, -0.324093872, 0.639358349, -0.521617766,
-0.564921063),
Point3(0.145118171, -0.252907438, 0.819956033)),
values.at<Camera>(x3).pose()));
Values result;
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
tictoc_finishedIteration_();
EXPECT(
assert_equal(
Pose3(
Rot3(0.154256096, -0.632754061, 0.75883289, -0.753276814,
-0.572308662, -0.324093872, 0.639358349, -0.521617766,
-0.564921063),
Point3(0.145118171, -0.252907438, 0.819956033)),
result.at<Camera>(x3).pose()));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ) {
// cout << " ************************ SmartProjectionPoseFactor: 3 cams + 3 landmarks: Rotation Only**********************" << endl;
using namespace vanillaPose;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// Two different cameras
Pose3 pose2 = level_pose
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Camera cam2(pose2, sharedK);
Camera cam3(pose3, sharedK);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
double rankTol = 10;
SmartFactor::shared_ptr smartFactor1(
new SmartFactor(rankTol, linThreshold, manageDegeneracy));
smartFactor1->add(measurements_cam1, views, model);
SmartFactor::shared_ptr smartFactor2(
new SmartFactor(rankTol, linThreshold, manageDegeneracy));
smartFactor2->add(measurements_cam2, views, model);
SmartFactor::shared_ptr smartFactor3(
new SmartFactor(rankTol, linThreshold, manageDegeneracy));
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3,
0.10);
Point3 positionPrior = Point3(0, 0, 1);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(
PoseTranslationPrior<Camera>(x2, positionPrior, noisePriorTranslation));
graph.push_back(
PoseTranslationPrior<Camera>(x3, positionPrior, noisePriorTranslation));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose3 * noise_pose, sharedK));
EXPECT(
assert_equal(
Pose3(
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
Point3(0.0897734171, -0.110201006, 0.901022872)),
values.at<Camera>(x3).pose()));
Values result;
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
tictoc_finishedIteration_();
EXPECT(
assert_equal(
Pose3(
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
Point3(0.0897734171, -0.110201006, 0.901022872)),
result.at<Camera>(x3).pose()));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, Hessian ) {
// cout << " ************************ SmartProjectionPoseFactor: Hessian **********************" << endl;
using namespace vanillaPose2;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
// Project three landmarks into 2 cameras
Point2 cam1_uv1 = cam1.project(landmark1);
Point2 cam2_uv1 = cam2.project(landmark1);
vector<Point2> measurements_cam1;
measurements_cam1.push_back(cam1_uv1);
measurements_cam1.push_back(cam2_uv1);
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
smartFactor1->add(measurements_cam1, views, model);
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
boost::shared_ptr<GaussianFactor> factor = smartFactor1->linearize(values);
// compute triangulation from linearization point
// compute reprojection errors (sum squared)
// compare with factor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
// check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
// cout << " ************************ SmartProjectionPoseFactor: rotated Hessian **********************" << endl;
using namespace vanillaPose;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
SmartFactor::shared_ptr smartFactorInstance(new SmartFactor());
smartFactorInstance->add(measurements_cam1, views, model);
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, cam3);
boost::shared_ptr<GaussianFactor> factor = smartFactorInstance->linearize(
values);
Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
rotValues.insert(x1, Camera(poseDrift.compose(level_pose), sharedK));
rotValues.insert(x2, Camera(poseDrift.compose(pose_right), sharedK));
rotValues.insert(x3, Camera(poseDrift.compose(pose_above), sharedK));
boost::shared_ptr<GaussianFactor> factorRot = smartFactorInstance->linearize(
rotValues);
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-7));
Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
Point3(10, -4, 5));
Values tranValues;
tranValues.insert(x1, Camera(poseDrift2.compose(level_pose), sharedK));
tranValues.insert(x2, Camera(poseDrift2.compose(pose_right), sharedK));
tranValues.insert(x3, Camera(poseDrift2.compose(pose_above), sharedK));
boost::shared_ptr<GaussianFactor> factorRotTran =
smartFactorInstance->linearize(tranValues);
// Hessian is invariant to rotations and translations in the nondegenerate case
EXPECT(
assert_equal(factor->information(), factorRotTran->information(), 1e-7));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
// cout << " ************************ SmartProjectionPoseFactor: rotated Hessian (degenerate) **********************" << endl;
using namespace vanillaPose2;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// All cameras have the same pose so will be degenerate !
Camera cam2(level_pose, sharedK2);
Camera cam3(level_pose, sharedK2);
vector<Point2> measurements_cam1;
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
SmartFactor::shared_ptr smartFactor(new SmartFactor());
smartFactor->add(measurements_cam1, views, model);
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, cam3);
boost::shared_ptr<GaussianFactor> factor = smartFactor->linearize(values);
Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
Values rotValues;
rotValues.insert(x1, Camera(poseDrift.compose(level_pose), sharedK2));
rotValues.insert(x2, Camera(poseDrift.compose(level_pose), sharedK2));
rotValues.insert(x3, Camera(poseDrift.compose(level_pose), sharedK2));
boost::shared_ptr<GaussianFactor> factorRot = //
smartFactor->linearize(rotValues);
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-8));
Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
Point3(10, -4, 5));
Values tranValues;
tranValues.insert(x1, Camera(poseDrift2.compose(level_pose), sharedK2));
tranValues.insert(x2, Camera(poseDrift2.compose(level_pose), sharedK2));
tranValues.insert(x3, Camera(poseDrift2.compose(level_pose), sharedK2));
boost::shared_ptr<GaussianFactor> factorRotTran = smartFactor->linearize(
tranValues);
// Hessian is invariant to rotations and translations in the nondegenerate case
EXPECT(
assert_equal(factor->information(), factorRotTran->information(), 1e-8));
}
/* ************************************************************************* */
TEST( SmartProjectionPoseFactor, ConstructorWithCal3Bundler) {
SmartFactorBundler factor(rankTol, linThreshold);
factor.add(measurement1, x1, model);
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, Cal3Bundler ) {
// cout << " ************************ SmartProjectionPoseFactor: Cal3Bundler **********************" << endl;
using namespace bundlerPose;
// three landmarks ~5 meters infront of camera
Point3 landmark3(3, 0, 3.0);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
SmartFactorBundler::shared_ptr smartFactor1(new SmartFactorBundler());
smartFactor1->add(measurements_cam1, views, model);
SmartFactorBundler::shared_ptr smartFactor2(new SmartFactorBundler());
smartFactor2->add(measurements_cam2, views, model);
SmartFactorBundler::shared_ptr smartFactor3(new SmartFactorBundler());
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedBundlerK));
EXPECT(
assert_equal(
Pose3(
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
Point3(0.1, -0.1, 1.9)), values.at<Camera>(x3).pose()));
Values result;
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
tictoc_finishedIteration_();
EXPECT(assert_equal(cam3, result.at<Camera>(x3), 1e-6));
}
/* *************************************************************************/
TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
using namespace bundlerPose;
vector<Key> views;
views.push_back(x1);
views.push_back(x2);
views.push_back(x3);
// Two different cameras
Pose3 pose2 = level_pose
* Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0, 0, 0));
Camera cam2(pose2, sharedBundlerK);
Camera cam3(pose3, sharedBundlerK);
// landmark3 at 3 meters now
Point3 landmark3(3, 0, 3.0);
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
double rankTol = 10;
SmartFactorBundler::shared_ptr smartFactor1(
new SmartFactorBundler(rankTol, linThreshold, manageDegeneracy));
smartFactor1->add(measurements_cam1, views, model);
SmartFactorBundler::shared_ptr smartFactor2(
new SmartFactorBundler(rankTol, linThreshold, manageDegeneracy));
smartFactor2->add(measurements_cam2, views, model);
SmartFactorBundler::shared_ptr smartFactor3(
new SmartFactorBundler(rankTol, linThreshold, manageDegeneracy));
smartFactor3->add(measurements_cam3, views, model);
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3,
0.10);
Point3 positionPrior = Point3(0, 0, 1);
NonlinearFactorGraph graph;
graph.push_back(smartFactor1);
graph.push_back(smartFactor2);
graph.push_back(smartFactor3);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(
PoseTranslationPrior<Camera>(x2, positionPrior, noisePriorTranslation));
graph.push_back(
PoseTranslationPrior<Camera>(x3, positionPrior, noisePriorTranslation));
// Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose3 * noise_pose, sharedBundlerK));
EXPECT(
assert_equal(
Pose3(
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
Point3(0.0897734171, -0.110201006, 0.901022872)),
values.at<Camera>(x3).pose()));
Values result;
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
tictoc_finishedIteration_();
EXPECT(
assert_equal(
Pose3(
Rot3(0.00563056869, -0.130848107, 0.991386438, -0.991390265,
-0.130426831, -0.0115837907, 0.130819108, -0.98278564,
-0.130455917),
Point3(0.0897734171, -0.110201006, 0.901022872)),
values.at<Camera>(x3).pose()));
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */