gtsam/gtsam/hybrid/tests/testGaussianMixture.cpp

139 lines
4.2 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianMixture.cpp
* @brief Unit tests for GaussianMixture class
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
#include <vector>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ************************************************************************* */
/* Check construction of GaussianMixture P(x1 | x2, m1) as well as accessing a
* specific mode i.e. P(x1 | x2, m1=1).
*/
TEST(GaussianMixture, Equals) {
// create a conditional gaussian node
Matrix S1(2, 2);
S1(0, 0) = 1;
S1(1, 0) = 2;
S1(0, 1) = 3;
S1(1, 1) = 4;
Matrix S2(2, 2);
S2(0, 0) = 6;
S2(1, 0) = 0.2;
S2(0, 1) = 8;
S2(1, 1) = 0.4;
Matrix R1(2, 2);
R1(0, 0) = 0.1;
R1(1, 0) = 0.3;
R1(0, 1) = 0.0;
R1(1, 1) = 0.34;
Matrix R2(2, 2);
R2(0, 0) = 0.1;
R2(1, 0) = 0.3;
R2(0, 1) = 0.0;
R2(1, 1) = 0.34;
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
Vector2 d1(0.2, 0.5), d2(0.5, 0.2);
auto conditional0 = boost::make_shared<GaussianConditional>(X(1), d1, R1,
X(2), S1, model),
conditional1 = boost::make_shared<GaussianConditional>(X(1), d2, R2,
X(2), S2, model);
// Create decision tree
DiscreteKey m1(1, 2);
GaussianMixture::Conditionals conditionals(
{m1},
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
GaussianMixture mixture({X(1)}, {X(2)}, {m1}, conditionals);
// Let's check that this worked:
DiscreteValues mode;
mode[m1.first] = 1;
auto actual = mixture(mode);
EXPECT(actual == conditional1);
}
/* ************************************************************************* */
/// Test error method of GaussianMixture.
TEST(GaussianMixture, Error) {
Matrix22 S1 = Matrix22::Identity();
Matrix22 S2 = Matrix22::Identity() * 2;
Matrix22 R1 = Matrix22::Ones();
Matrix22 R2 = Matrix22::Ones();
Vector2 d1(1, 2), d2(2, 1);
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
auto conditional0 = boost::make_shared<GaussianConditional>(X(1), d1, R1,
X(2), S1, model),
conditional1 = boost::make_shared<GaussianConditional>(X(1), d2, R2,
X(2), S2, model);
// Create decision tree
DiscreteKey m1(M(1), 2);
GaussianMixture::Conditionals conditionals(
{m1},
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
GaussianMixture mixture({X(1)}, {X(2)}, {m1}, conditionals);
VectorValues values;
values.insert(X(1), Vector2::Ones());
values.insert(X(2), Vector2::Zero());
auto error_tree = mixture.error(values);
// regression
std::vector<DiscreteKey> discrete_keys = {m1};
std::vector<double> leaves = {0.5, 4.3252595};
AlgebraicDecisionTree<Key> expected_error(discrete_keys, leaves);
EXPECT(assert_equal(expected_error, error_tree, 1e-6));
// Regression for non-tree version.
DiscreteValues assignment;
assignment[M(1)] = 0;
EXPECT_DOUBLES_EQUAL(0.5, mixture.error(values, assignment), 1e-8);
assignment[M(1)] = 1;
EXPECT_DOUBLES_EQUAL(4.3252595155709335, mixture.error(values, assignment), 1e-8);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */