848 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			848 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
| /**
 | |
|  *  @file   testGaussianFactorGraph.cpp
 | |
|  *  @brief  Unit tests for Linear Factor Graph
 | |
|  *  @author Christian Potthast
 | |
|  **/
 | |
| 
 | |
| #include <string.h>
 | |
| #include <iostream>
 | |
| using namespace std;
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/tuple/tuple.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| #include <boost/assign/std/vector.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include "Matrix.h"
 | |
| #include "Ordering.h"
 | |
| #include "smallExample.h"
 | |
| #include "GaussianBayesNet.h"
 | |
| #include "numericalDerivative.h"
 | |
| #include "inference-inl.h" // needed for eliminate and marginals
 | |
| 
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| double tol=1e-5;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /* unit test for equals (GaussianFactorGraph1 == GaussianFactorGraph2)           */
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, equals ){
 | |
| 
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | |
|   CHECK(fg.equals(fg2));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, error )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   VectorConfig cfg = createZeroDelta();
 | |
| 
 | |
|   // note the error is the same as in testNonlinearFactorGraph as a
 | |
|   // zero delta config in the linear graph is equivalent to noisy in
 | |
|   // non-linear, which is really linear under the hood
 | |
|   double actual = fg.error(cfg);
 | |
|   DOUBLES_EQUAL( 5.625, actual, 1e-9 );
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| /* unit test for find seperator                                              */
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, find_separator )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   set<Symbol> separator = fg.find_separator("x2");
 | |
|   set<Symbol> expected;
 | |
|   expected.insert("x1");
 | |
|   expected.insert("l1");
 | |
| 
 | |
|   CHECK(separator.size()==expected.size());
 | |
|   set<Symbol>::iterator it1 = separator.begin(), it2 = expected.begin();
 | |
|   for(; it1!=separator.end(); it1++, it2++)
 | |
|     CHECK(*it1 == *it2);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, combine_factors_x1 )
 | |
| {
 | |
|   // create a small example for a linear factor graph
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // combine all factors
 | |
|   GaussianFactor::shared_ptr actual = removeAndCombineFactors(fg,"x1");
 | |
| 
 | |
|   // the expected linear factor
 | |
|   Matrix Al1 = Matrix_(6,2,
 | |
| 			 0., 0.,
 | |
| 			 0., 0.,
 | |
| 			 0., 0.,
 | |
| 			 0., 0.,
 | |
| 			 5., 0.,
 | |
| 			 0., 5.
 | |
| 			 );
 | |
| 
 | |
|   Matrix Ax1 = Matrix_(6,2,
 | |
| 			 10., 0.,
 | |
| 			 0., 10.,
 | |
| 			-10., 0.,
 | |
| 			 0.,-10.,
 | |
| 			-5., 0.,
 | |
| 			 0.,-5.
 | |
| 			 );
 | |
| 
 | |
|   Matrix Ax2 = Matrix_(6,2,
 | |
| 			 0., 0.,
 | |
| 			 0., 0.,
 | |
| 			 10., 0.,
 | |
| 			 0., 10.,
 | |
| 			 0., 0.,
 | |
| 			 0., 0.
 | |
| 			 );
 | |
| 
 | |
|   // the expected RHS vector
 | |
|   Vector b(6);
 | |
|   b(0) = -1;
 | |
|   b(1) = -1;
 | |
|   b(2) =  2;
 | |
|   b(3) = -1;
 | |
|   b(4) =  0;
 | |
|   b(5) =  1;
 | |
| 
 | |
|   vector<pair<Symbol, Matrix> > meas;
 | |
|   meas.push_back(make_pair("l1", Al1));
 | |
|   meas.push_back(make_pair("x1", Ax1));
 | |
|   meas.push_back(make_pair("x2", Ax2));
 | |
|   GaussianFactor expected(meas, b, ones(6));
 | |
|   //GaussianFactor expected("l1", Al1, "x1", Ax1, "x2", Ax2, b);
 | |
| 
 | |
|   // check if the two factors are the same
 | |
|   CHECK(assert_equal(expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, combine_factors_x2 )
 | |
| {
 | |
|  // create a small example for a linear factor graph
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // combine all factors
 | |
|   GaussianFactor::shared_ptr actual = removeAndCombineFactors(fg,"x2");
 | |
| 
 | |
|   // the expected linear factor
 | |
|   Matrix Al1 = Matrix_(4,2,
 | |
| 			 // l1
 | |
| 			 0., 0.,
 | |
| 			 0., 0.,
 | |
| 			 5., 0.,
 | |
| 			 0., 5.
 | |
| 			 );
 | |
| 
 | |
|   Matrix Ax1 = Matrix_(4,2,
 | |
|                          // x1
 | |
| 			-10., 0., // f2
 | |
| 			 0.,-10., // f2
 | |
| 			 0., 0., // f4
 | |
| 			 0., 0.  // f4
 | |
| 			 );
 | |
| 
 | |
|   Matrix Ax2 = Matrix_(4,2,
 | |
| 			 // x2
 | |
| 			 10., 0.,
 | |
| 			 0., 10.,
 | |
| 			-5., 0.,
 | |
| 			 0.,-5.
 | |
| 			 );
 | |
| 
 | |
|   // the expected RHS vector
 | |
|   Vector b(4);
 | |
|   b(0) =  2;
 | |
|   b(1) = -1;
 | |
|   b(2) = -1;
 | |
|   b(3) =  1.5;
 | |
| 
 | |
|   vector<pair<Symbol, Matrix> > meas;
 | |
|   meas.push_back(make_pair("l1", Al1));
 | |
|   meas.push_back(make_pair("x1", Ax1));
 | |
|   meas.push_back(make_pair("x2", Ax2));
 | |
|   GaussianFactor expected(meas, b, ones(4));
 | |
| 
 | |
|   // check if the two factors are the same
 | |
|   CHECK(assert_equal(expected,*actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x1 )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianConditional::shared_ptr actual = fg.eliminateOne("x1");
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   Matrix I = 15*eye(2), R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
 | |
|   Vector d = Vector_(2, -0.133333, -0.0222222), sigma = ones(2);
 | |
|   GaussianConditional expected("x1",15*d,R11,"l1",S12,"x2",S13,sigma);
 | |
| 
 | |
|   CHECK(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x2 )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianConditional::shared_ptr actual = fg.eliminateOne("x2");
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = 0.0894427;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | |
|   Vector d = Vector_(2, 0.2, -0.14)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected("x2",d,R11,"l1",S12,"x1",S13,sigma);
 | |
| 
 | |
|   CHECK(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_l1 )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianConditional::shared_ptr actual = fg.eliminateOne("l1");
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = sqrt(2)/10.;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
 | |
|   Vector d = Vector_(2, -0.1, 0.25)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected("l1",d,R11,"x1",S12,"x2",S13,sigma);
 | |
| 
 | |
|   CHECK(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x1_fast )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianConditional::shared_ptr actual = fg.eliminateOne("x1", false);
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   Matrix I = 15*eye(2), R11 = I, S12 = -0.111111*I, S13 = -0.444444*I;
 | |
|   Vector d = Vector_(2, -0.133333, -0.0222222), sigma = ones(2);
 | |
|   GaussianConditional expected("x1",15*d,R11,"l1",S12,"x2",S13,sigma);
 | |
| 
 | |
|   CHECK(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_x2_fast )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianConditional::shared_ptr actual = fg.eliminateOne("x2", false);
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = 0.0894427;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I;
 | |
|   Vector d = Vector_(2, 0.2, -0.14)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected("x2",d,R11,"l1",S12,"x1",S13,sigma);
 | |
| 
 | |
|   CHECK(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateOne_l1_fast )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianConditional::shared_ptr actual = fg.eliminateOne("l1", false);
 | |
| 
 | |
|   // create expected Conditional Gaussian
 | |
|   double sig = sqrt(2)/10.;
 | |
|   Matrix I = eye(2)/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I;
 | |
|   Vector d = Vector_(2, -0.1, 0.25)/sig, sigma = ones(2);
 | |
|   GaussianConditional expected("l1",d,R11,"x1",S12,"x2",S13,sigma);
 | |
| 
 | |
|   CHECK(assert_equal(expected,*actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateAll )
 | |
| {
 | |
| 	// create expected Chordal bayes Net
 | |
| 	Matrix I = eye(2);
 | |
| 
 | |
| 	Vector d1 = Vector_(2, -0.1,-0.1);
 | |
| 	GaussianBayesNet expected = simpleGaussian("x1",d1,0.1);
 | |
| 
 | |
| 	double sig1 = 0.149071;
 | |
| 	Vector d2 = Vector_(2, 0.0, 0.2)/sig1, sigma2 = ones(2);
 | |
| 	push_front(expected,"l1",d2, I/sig1,"x1", (-1)*I/sig1,sigma2);
 | |
| 
 | |
| 	double sig2 = 0.0894427;
 | |
| 	Vector d3 = Vector_(2, 0.2, -0.14)/sig2, sigma3 = ones(2);
 | |
| 	push_front(expected,"x2",d3, I/sig2,"l1", (-0.2)*I/sig2, "x1", (-0.8)*I/sig2, sigma3);
 | |
| 
 | |
| 	// Check one ordering
 | |
| 	GaussianFactorGraph fg1 = createGaussianFactorGraph();
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x2","l1","x1";
 | |
| 	GaussianBayesNet actual = fg1.eliminate(ordering);
 | |
| 	CHECK(assert_equal(expected,actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, eliminateAll_fast )
 | |
| {
 | |
| 	// create expected Chordal bayes Net
 | |
| 	Matrix I = eye(2);
 | |
| 
 | |
| 	Vector d1 = Vector_(2, -0.1,-0.1);
 | |
| 	GaussianBayesNet expected = simpleGaussian("x1",d1,0.1);
 | |
| 
 | |
| 	double sig1 = 0.149071;
 | |
| 	Vector d2 = Vector_(2, 0.0, 0.2)/sig1, sigma2 = ones(2);
 | |
| 	push_front(expected,"l1",d2, I/sig1,"x1", (-1)*I/sig1,sigma2);
 | |
| 
 | |
| 	double sig2 = 0.0894427;
 | |
| 	Vector d3 = Vector_(2, 0.2, -0.14)/sig2, sigma3 = ones(2);
 | |
| 	push_front(expected,"x2",d3, I/sig2,"l1", (-0.2)*I/sig2, "x1", (-0.8)*I/sig2, sigma3);
 | |
| 
 | |
| 	// Check one ordering
 | |
| 	GaussianFactorGraph fg1 = createGaussianFactorGraph();
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x2","l1","x1";
 | |
| 	GaussianBayesNet actual = fg1.eliminate(ordering, false);
 | |
| 	CHECK(assert_equal(expected,actual,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, add_priors )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   GaussianFactorGraph actual = fg.add_priors(3);
 | |
|   GaussianFactorGraph expected = createGaussianFactorGraph();
 | |
|   Matrix A = eye(2);
 | |
|   Vector b = zero(2);
 | |
|   SharedDiagonal sigma = sharedSigma(2,3.0);
 | |
|   expected.push_back(GaussianFactor::shared_ptr(new GaussianFactor("l1",A,b,sigma)));
 | |
|   expected.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x1",A,b,sigma)));
 | |
|   expected.push_back(GaussianFactor::shared_ptr(new GaussianFactor("x2",A,b,sigma)));
 | |
|   CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, copying )
 | |
| {
 | |
|   // Create a graph
 | |
|   GaussianFactorGraph actual = createGaussianFactorGraph();
 | |
| 
 | |
|   // Copy the graph !
 | |
|   GaussianFactorGraph copy = actual;
 | |
| 
 | |
|   // now eliminate the copy
 | |
|   Ordering ord1;
 | |
|   ord1 += "x2","l1","x1";
 | |
|   GaussianBayesNet actual1 = copy.eliminate(ord1);
 | |
| 
 | |
|   // Create the same graph, but not by copying
 | |
|   GaussianFactorGraph expected = createGaussianFactorGraph();
 | |
| 
 | |
|   // and check that original is still the same graph
 | |
|   CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, matrix )
 | |
| {
 | |
|   // Create a graph
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // render with a given ordering
 | |
|   Ordering ord;
 | |
|   ord += "x2","l1","x1";
 | |
| 
 | |
|   Matrix A; Vector b;
 | |
|   boost::tie(A,b) = fg.matrix(ord);
 | |
| 
 | |
|   Matrix A1 = Matrix_(2*4,3*2,
 | |
| 		     +0.,  0.,  0.,  0., 10.,  0., // unary factor on x1 (prior)
 | |
| 		     +0.,  0.,  0.,  0.,  0., 10.,
 | |
| 		     10.,  0.,  0.,  0.,-10.,  0., // binary factor on x2,x1 (odometry)
 | |
| 		     +0., 10.,  0.,  0.,  0.,-10.,
 | |
| 		     +0.,  0.,  5.,  0., -5.,  0., // binary factor on l1,x1 (z1)
 | |
| 		     +0.,  0.,  0.,  5.,  0., -5.,
 | |
| 		     -5.,  0.,  5.,  0.,  0.,  0., // binary factor on x2,l1 (z2)
 | |
| 		     +0., -5.,  0.,  5.,  0.,  0.
 | |
|     );
 | |
|   Vector b1 = Vector_(8,-1., -1., 2., -1., 0., 1., -1., 1.5);
 | |
| 
 | |
|   EQUALITY(A,A1);
 | |
|   CHECK(b==b1);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, sparse )
 | |
| {
 | |
| 	// create a small linear factor graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// render with a given ordering
 | |
| 	Ordering ord;
 | |
|   ord += "x2","l1","x1";
 | |
| 
 | |
| 	Matrix ijs = fg.sparse(ord);
 | |
| 
 | |
| 	EQUALITY(Matrix_(3, 14,
 | |
| 		// f(x1)   f(x2,x1)            f(l1,x1)         f(x2,l1)
 | |
| 		+1., 2.,   3.,  4.,  3.,  4.,   5.,6., 5., 6.,   7., 8., 7., 8.,
 | |
| 		+5., 6.,   5.,  6.,  1.,  2.,   3.,4., 5., 6.,   3., 4., 1., 2.,
 | |
| 		10.,10., -10.,-10., 10., 10.,   5.,5.,-5.,-5.,   5., 5.,-5.,-5.), ijs);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // render with a given ordering
 | |
|   Ordering ord;
 | |
|   ord += "x2","l1","x1";
 | |
|   GaussianBayesNet CBN = fg.eliminate(ord);
 | |
| 
 | |
|   // True GaussianFactorGraph
 | |
|   GaussianFactorGraph fg2(CBN);
 | |
|   GaussianBayesNet CBN2 = fg2.eliminate(ord);
 | |
|   CHECK(assert_equal(CBN,CBN2));
 | |
| 
 | |
|   // Base FactorGraph only
 | |
|   FactorGraph<GaussianFactor> fg3(CBN);
 | |
|   GaussianBayesNet CBN3 = gtsam::eliminate<GaussianFactor,GaussianConditional>(fg3,ord);
 | |
|   CHECK(assert_equal(CBN,CBN3));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, getOrdering)
 | |
| {
 | |
|   Ordering expected;
 | |
|   expected += "l1","x1","x2";
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   Ordering actual = fg.getOrdering();
 | |
|   CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, optimize )
 | |
| {
 | |
| 	// create a graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// create an ordering
 | |
| 	Ordering ord = fg.getOrdering();
 | |
| 
 | |
| 	// optimize the graph
 | |
| 	VectorConfig actual = fg.optimize(ord);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected = createCorrectDelta();
 | |
| 
 | |
|   CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, combine)
 | |
| {
 | |
| 	// create a test graph
 | |
| 	GaussianFactorGraph fg1 = createGaussianFactorGraph();
 | |
| 
 | |
| 	// create another factor graph
 | |
| 	GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get sizes
 | |
| 	int size1 = fg1.size();
 | |
| 	int size2 = fg2.size();
 | |
| 
 | |
| 	// combine them
 | |
| 	fg1.combine(fg2);
 | |
| 
 | |
| 	CHECK(size1+size2 == fg1.size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, combine2)
 | |
| {
 | |
| 	// create a test graph
 | |
| 	GaussianFactorGraph fg1 = createGaussianFactorGraph();
 | |
| 
 | |
| 	// create another factor graph
 | |
| 	GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | |
| 
 | |
| 	// get sizes
 | |
| 	int size1 = fg1.size();
 | |
| 	int size2 = fg2.size();
 | |
| 
 | |
| 	// combine them
 | |
| 	GaussianFactorGraph fg3 = GaussianFactorGraph::combine2(fg1, fg2);
 | |
| 
 | |
| 	CHECK(size1+size2 == fg3.size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // print a vector of ints if needed for debugging
 | |
| void print(vector<int> v) {
 | |
| 	for (int k = 0; k < v.size(); k++)
 | |
| 		cout << v[k] << " ";
 | |
| 	cout << endl;
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, factor_lookup)
 | |
| {
 | |
| 	// create a test graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// ask for all factor indices connected to x1
 | |
| 	list<int> x1_factors = fg.factors("x1");
 | |
| 	int x1_indices[] = { 0, 1, 2 };
 | |
| 	list<int> x1_expected(x1_indices, x1_indices + 3);
 | |
| 	CHECK(x1_factors==x1_expected);
 | |
| 
 | |
| 	// ask for all factor indices connected to x2
 | |
| 	list<int> x2_factors = fg.factors("x2");
 | |
| 	int x2_indices[] = { 1, 3 };
 | |
| 	list<int> x2_expected(x2_indices, x2_indices + 2);
 | |
| 	CHECK(x2_factors==x2_expected);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, findAndRemoveFactors )
 | |
| {
 | |
| 	// create the graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // We expect to remove these three factors: 0, 1, 2
 | |
|   GaussianFactor::shared_ptr f0 = fg[0];
 | |
|   GaussianFactor::shared_ptr f1 = fg[1];
 | |
|   GaussianFactor::shared_ptr f2 = fg[2];
 | |
| 
 | |
|   // call the function
 | |
|   vector<GaussianFactor::shared_ptr> factors = fg.findAndRemoveFactors("x1");
 | |
| 
 | |
|   // Check the factors
 | |
|   CHECK(f0==factors[0]);
 | |
|   CHECK(f1==factors[1]);
 | |
|   CHECK(f2==factors[2]);
 | |
| 
 | |
|   // CHECK if the factors are deleted from the factor graph
 | |
|   LONGS_EQUAL(1,fg.nrFactors());
 | |
|   }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, findAndRemoveFactors_twice )
 | |
| {
 | |
| 	// create the graph
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
|   // We expect to remove these three factors: 0, 1, 2
 | |
|   GaussianFactor::shared_ptr f0 = fg[0];
 | |
|   GaussianFactor::shared_ptr f1 = fg[1];
 | |
|   GaussianFactor::shared_ptr f2 = fg[2];
 | |
| 
 | |
|   // call the function
 | |
|   vector<GaussianFactor::shared_ptr> factors = fg.findAndRemoveFactors("x1");
 | |
| 
 | |
|   // Check the factors
 | |
|   CHECK(f0==factors[0]);
 | |
|   CHECK(f1==factors[1]);
 | |
|   CHECK(f2==factors[2]);
 | |
| 
 | |
|   factors = fg.findAndRemoveFactors("x1");
 | |
|   CHECK(factors.size() == 0);
 | |
| 
 | |
|   // CHECK if the factors are deleted from the factor graph
 | |
|   LONGS_EQUAL(1,fg.nrFactors());
 | |
|   }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST(GaussianFactorGraph, createSmoother)
 | |
| {
 | |
| 	GaussianFactorGraph fg1 = createSmoother(2);
 | |
| 	LONGS_EQUAL(3,fg1.size());
 | |
| 	GaussianFactorGraph fg2 = createSmoother(3);
 | |
| 	LONGS_EQUAL(5,fg2.size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, variables )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   Dimensions expected;
 | |
|   insert(expected)("l1", 2)("x1", 2)("x2", 2);
 | |
|   Dimensions actual = fg.dimensions();
 | |
|   CHECK(expected==actual);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, keys )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   Ordering expected;
 | |
|   expected += "l1","x1","x2";
 | |
|   CHECK(assert_equal(expected,fg.keys()));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, involves )
 | |
| {
 | |
|   GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
|   CHECK(fg.involves("l1"));
 | |
|   CHECK(fg.involves("x1"));
 | |
|   CHECK(fg.involves("x2"));
 | |
|   CHECK(!fg.involves("x3"));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| double error(const VectorConfig& x) {
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 	return fg.error(x);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, gradient )
 | |
| {
 | |
| 	GaussianFactorGraph fg = createGaussianFactorGraph();
 | |
| 
 | |
| 	// Construct expected gradient
 | |
| 	VectorConfig expected;
 | |
| 
 | |
|   // 2*f(x) = 100*(x1+c["x1"])^2 + 100*(x2-x1-[0.2;-0.1])^2 + 25*(l1-x1-[0.0;0.2])^2 + 25*(l1-x2-[-0.2;0.3])^2
 | |
| 	// worked out: df/dx1 = 100*[0.1;0.1] + 100*[0.2;-0.1]) + 25*[0.0;0.2] = [10+20;10-10+5] = [30;5]
 | |
|   expected.insert("l1",Vector_(2,  5.0,-12.5));
 | |
|   expected.insert("x1",Vector_(2, 30.0,  5.0));
 | |
|   expected.insert("x2",Vector_(2,-25.0, 17.5));
 | |
| 
 | |
| 	// Check the gradient at delta=0
 | |
|   VectorConfig zero = createZeroDelta();
 | |
| 	VectorConfig actual = fg.gradient(zero);
 | |
| 	CHECK(assert_equal(expected,actual));
 | |
| 
 | |
| 	// Check it numerically for good measure
 | |
| 	Vector numerical_g = numericalGradient<VectorConfig>(error,zero,0.001);
 | |
| 	CHECK(assert_equal(Vector_(6,5.0,-12.5,30.0,5.0,-25.0,17.5),numerical_g));
 | |
| 
 | |
| 	// Check the gradient at the solution (should be zero)
 | |
| 	Ordering ord;
 | |
|   ord += "x2","l1","x1";
 | |
| 	GaussianFactorGraph fg2 = createGaussianFactorGraph();
 | |
|   VectorConfig solution = fg2.optimize(ord); // destructive
 | |
| 	VectorConfig actual2 = fg.gradient(solution);
 | |
| 	CHECK(assert_equal(zero,actual2));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, multiplication )
 | |
| {
 | |
| 	GaussianFactorGraph A = createGaussianFactorGraph();
 | |
|   VectorConfig x = createCorrectDelta();
 | |
|   Errors actual = A * x;
 | |
|   Errors expected;
 | |
|   expected += Vector_(2,-1.0,-1.0);
 | |
|   expected += Vector_(2, 2.0,-1.0);
 | |
|   expected += Vector_(2, 0.0, 1.0);
 | |
|   expected += Vector_(2,-1.0, 1.5);
 | |
| 	CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, transposeMultiplication )
 | |
| {
 | |
| 	GaussianFactorGraph A = createGaussianFactorGraph();
 | |
|   Errors e;
 | |
|   e += Vector_(2, 0.0, 0.0);
 | |
|   e += Vector_(2,15.0, 0.0);
 | |
|   e += Vector_(2, 0.0,-5.0);
 | |
|   e += Vector_(2,-7.5,-5.0);
 | |
| 
 | |
|   VectorConfig expected, actual = A ^ e;
 | |
|   expected.insert("l1",Vector_(2, -37.5,-50.0));
 | |
|   expected.insert("x1",Vector_(2,-150.0, 25.0));
 | |
|   expected.insert("x2",Vector_(2, 187.5, 25.0));
 | |
| 	CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, rhs )
 | |
| {
 | |
| 	GaussianFactorGraph Ab = createGaussianFactorGraph();
 | |
| 	Errors expected, actual = Ab.rhs();
 | |
|   expected.push_back(Vector_(2,-1.0,-1.0));
 | |
|   expected.push_back(Vector_(2, 2.0,-1.0));
 | |
|   expected.push_back(Vector_(2, 0.0, 1.0));
 | |
|   expected.push_back(Vector_(2,-1.0, 1.5));
 | |
| 	CHECK(assert_equal(expected,actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Extra test on elimination prompted by Michael's email to Frank 1/4/2010
 | |
| TEST( GaussianFactorGraph, elimination )
 | |
| {
 | |
| 	// Create Gaussian Factor Graph
 | |
| 	GaussianFactorGraph fg;
 | |
| 	Matrix Ap = eye(1), An = eye(1) * -1;
 | |
| 	Vector b = Vector_(1, 0.0);
 | |
|   SharedDiagonal sigma = sharedSigma(2,2.0);
 | |
| 	fg.add("x1", An, "x2", Ap, b, sigma);
 | |
| 	fg.add("x1", Ap, b, sigma);
 | |
| 	fg.add("x2", Ap, b, sigma);
 | |
| 
 | |
| 	// Eliminate
 | |
| 	Ordering ord;
 | |
| 	ord += "x1", "x2";
 | |
| 	GaussianBayesNet bayesNet = fg.eliminate(ord);
 | |
| 
 | |
| 	// Check sigma
 | |
| 	DOUBLES_EQUAL(1.0,bayesNet["x2"]->get_sigmas()(0),1e-5);
 | |
| 
 | |
| 	// Check matrix
 | |
| 	Matrix R;Vector d;
 | |
| 	boost::tie(R,d) = matrix(bayesNet);
 | |
| 	Matrix expected = Matrix_(2,2,
 | |
| 			0.707107,	-0.353553,
 | |
| 			0.0,	 0.612372);
 | |
| 	CHECK(assert_equal(expected,R,1e-6));
 | |
| }
 | |
| 
 | |
|  /* ************************************************************************* */
 | |
| // Tests ported from ConstrainedGaussianFactorGraph
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_simple )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createSimpleConstraintGraph();
 | |
| 
 | |
| 	// eliminate and solve
 | |
| 	Ordering ord;
 | |
| 	ord += "x", "y";
 | |
| 	VectorConfig actual = fg.optimize(ord);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected = createSimpleConstraintConfig();
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_single )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createSingleConstraintGraph();
 | |
| 
 | |
| 	// eliminate and solve
 | |
| 	Ordering ord;
 | |
| 	ord += "x", "y";
 | |
| 	VectorConfig actual = fg.optimize(ord);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected = createSingleConstraintConfig();
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_single2 )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createSingleConstraintGraph();
 | |
| 
 | |
| 	// eliminate and solve
 | |
| 	Ordering ord;
 | |
| 	ord += "y", "x";
 | |
| 	VectorConfig actual = fg.optimize(ord);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected = createSingleConstraintConfig();
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_multi1 )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createMultiConstraintGraph();
 | |
| 
 | |
| 	// eliminate and solve
 | |
| 	Ordering ord;
 | |
| 	ord += "x", "y", "z";
 | |
| 	VectorConfig actual = fg.optimize(ord);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected = createMultiConstraintConfig();
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, constrained_multi2 )
 | |
| {
 | |
| 	// get a graph with a constraint in it
 | |
| 	GaussianFactorGraph fg = createMultiConstraintGraph();
 | |
| 
 | |
| 	// eliminate and solve
 | |
| 	Ordering ord;
 | |
| 	ord += "z", "x", "y";
 | |
| 	VectorConfig actual = fg.optimize(ord);
 | |
| 
 | |
| 	// verify
 | |
| 	VectorConfig expected = createMultiConstraintConfig();
 | |
| 	CHECK(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| 
 | |
| SharedDiagonal model = sharedSigma(2,1);
 | |
| 
 | |
| TEST( GaussianFactorGraph, findMinimumSpanningTree )
 | |
| {
 | |
| 	GaussianFactorGraph g;
 | |
| 	Matrix I = eye(2);
 | |
| 	Vector b = Vector_(0, 0, 0);
 | |
| 	g.add("x1", I, "x2", I, b, model);
 | |
| 	g.add("x1", I, "x3", I, b, model);
 | |
| 	g.add("x1", I, "x4", I, b, model);
 | |
| 	g.add("x2", I, "x3", I, b, model);
 | |
| 	g.add("x2", I, "x4", I, b, model);
 | |
| 	g.add("x3", I, "x4", I, b, model);
 | |
| 
 | |
| 	map<string, string> tree = g.findMinimumSpanningTree<string, GaussianFactor>();
 | |
| 	CHECK(tree["x1"].compare("x1")==0);
 | |
| 	CHECK(tree["x2"].compare("x1")==0);
 | |
| 	CHECK(tree["x3"].compare("x1")==0);
 | |
| 	CHECK(tree["x4"].compare("x1")==0);
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST( GaussianFactorGraph, split )
 | |
| {
 | |
| 	GaussianFactorGraph g;
 | |
| 	Matrix I = eye(2);
 | |
| 	Vector b = Vector_(0, 0, 0);
 | |
| 	g.add("x1", I, "x2", I, b, model);
 | |
| 	g.add("x1", I, "x3", I, b, model);
 | |
| 	g.add("x1", I, "x4", I, b, model);
 | |
| 	g.add("x2", I, "x3", I, b, model);
 | |
| 	g.add("x2", I, "x4", I, b, model);
 | |
| 
 | |
| 	PredecessorMap<string> tree;
 | |
| 	tree["x1"] = "x1";
 | |
| 	tree["x2"] = "x1";
 | |
| 	tree["x3"] = "x1";
 | |
| 	tree["x4"] = "x1";
 | |
| 
 | |
| 	GaussianFactorGraph Ab1, Ab2;
 | |
|   g.split<string, GaussianFactor>(tree, Ab1, Ab2);
 | |
| 	LONGS_EQUAL(3, Ab1.size());
 | |
| 	LONGS_EQUAL(2, Ab2.size());
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |