gtsam/gtsam_unstable/geometry/tests/testSimilarity3.cpp

346 lines
13 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testSimilarity3.cpp
* @brief Unit tests for Similarity3 class
* @author Paul Drews
*/
#include <gtsam_unstable/geometry/Similarity3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/ExpressionFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
#include <boost/function.hpp>
#include <boost/bind.hpp>
using namespace gtsam;
using namespace std;
using symbol_shorthand::X;
GTSAM_CONCEPT_TESTABLE_INST(Similarity3)
static Point3 P(0.2, 0.7, -2);
static Rot3 R = Rot3::rodriguez(0.3, 0, 0);
static Similarity3 T(R, Point3(3.5, -8.2, 4.2), 1);
static Similarity3 T2(Rot3::rodriguez(0.3, 0.2, 0.1), Point3(3.5, -8.2, 4.2),
1);
static Similarity3 T3(Rot3::rodriguez(-90, 0, 0), Point3(1, 2, 3), 1);
// Simpler transform
Similarity3 T4(Rot3(), Point3(1, 1, 0), 2);
//******************************************************************************
TEST(Similarity3, Constructors) {
Similarity3 test;
}
//******************************************************************************
TEST(Similarity3, Getters) {
Similarity3 test;
EXPECT(assert_equal(Rot3(), test.rotation()));
EXPECT(assert_equal(Point3(), test.translation()));
EXPECT_DOUBLES_EQUAL(1.0, test.scale(), 1e-9);
}
//******************************************************************************
TEST(Similarity3, Getters2) {
Similarity3 test(Rot3::ypr(1, 2, 3), Point3(4, 5, 6), 7);
EXPECT(assert_equal(Rot3::ypr(1, 2, 3), test.rotation()));
EXPECT(assert_equal(Point3(4, 5, 6), test.translation()));
EXPECT_DOUBLES_EQUAL(7.0, test.scale(), 1e-9);
}
//******************************************************************************
TEST(Similarity3, AdjointMap) {
Similarity3 test(Rot3::ypr(1, 2, 3).inverse(), Point3(4, 5, 6), 7);
Matrix7 result;
result << -1.5739, -2.4512, -6.3651, -50.7671, -11.2503, 16.8859, -28.0000, 6.3167, -2.9884, -0.4111, 0.8502, 8.6373, -49.7260, -35.0000, -2.5734, -5.8362, 2.8839, 33.1363, 0.3024, 30.1811, -42.0000, 0, 0, 0, -0.2248, -0.3502, -0.9093, 0, 0, 0, 0, 0.9024, -0.4269, -0.0587, 0, 0, 0, 0, -0.3676, -0.8337, 0.4120, 0, 0, 0, 0, 0, 0, 0, 1.0000;
EXPECT(assert_equal(result, test.AdjointMap(), 1e-3));
}
//******************************************************************************
TEST(Similarity3, inverse) {
Similarity3 test(Rot3::ypr(1, 2, 3).inverse(), Point3(4, 5, 6), 7);
Matrix3 Re;
Re << -0.2248, 0.9024, -0.3676, -0.3502, -0.4269, -0.8337, -0.9093, -0.0587, 0.4120;
Vector3 te(-9.8472, 59.7640, 10.2125);
Similarity3 expected(Re, te, 1.0 / 7.0);
EXPECT(assert_equal(expected, test.inverse(), 1e-3));
}
//******************************************************************************
TEST(Similarity3, Multiplication) {
Similarity3 test1(Rot3::ypr(1, 2, 3).inverse(), Point3(4, 5, 6), 7);
Similarity3 test2(Rot3::ypr(1, 2, 3).inverse(), Point3(8, 9, 10), 11);
Matrix3 re;
re << 0.0688, 0.9863, -0.1496, -0.5665, -0.0848, -0.8197, -0.8211, 0.1412, 0.5530;
Vector3 te(-13.6797, 3.2441, -5.7794);
Similarity3 expected(re, te, 77);
EXPECT(assert_equal(expected, test1 * test2, 1e-2));
}
//******************************************************************************
TEST(Similarity3, Manifold) {
EXPECT_LONGS_EQUAL(7, Similarity3::Dim());
Vector z = Vector7::Zero();
Similarity3 sim;
EXPECT(sim.retract(z) == sim);
Vector7 v = Vector7::Zero();
v(6) = 2;
Similarity3 sim2;
EXPECT(sim2.retract(z) == sim2);
EXPECT(assert_equal(z, sim2.localCoordinates(sim)));
Similarity3 sim3 = Similarity3(Rot3(), Point3(1, 2, 3), 1);
Vector v3(7);
v3 << 0, 0, 0, 1, 2, 3, 0;
EXPECT(assert_equal(v3, sim2.localCoordinates(sim3)));
// Similarity3 other = Similarity3(Rot3::ypr(0.01, 0.02, 0.03), Point3(0.4, 0.5, 0.6), 1);
Similarity3 other = Similarity3(Rot3::ypr(0.1, 0.2, 0.3), Point3(4, 5, 6), 1);
Vector vlocal = sim.localCoordinates(other);
EXPECT(assert_equal(sim.retract(vlocal), other, 1e-2));
Similarity3 other2 = Similarity3(Rot3::ypr(0.3, 0, 0), Point3(4, 5, 6), 1);
Rot3 R = Rot3::rodriguez(0.3, 0, 0);
Vector vlocal2 = sim.localCoordinates(other2);
EXPECT(assert_equal(sim.retract(vlocal2), other2, 1e-2));
// TODO add unit tests for retract and localCoordinates
}
//******************************************************************************
TEST( Similarity3, retract_first_order) {
Similarity3 id;
Vector v = zero(7);
v(0) = 0.3;
EXPECT(assert_equal(Similarity3(R, Point3(), 1), id.retract(v), 1e-2));
v(3) = 0.2;
v(4) = 0.7;
v(5) = -2;
EXPECT(assert_equal(Similarity3(R, P, 1), id.retract(v), 1e-2));
}
//******************************************************************************
TEST(Similarity3, localCoordinates_first_order) {
Vector d12 = repeat(7, 0.1);
d12(6) = 1.0;
Similarity3 t1 = T, t2 = t1.retract(d12);
EXPECT(assert_equal(d12, t1.localCoordinates(t2)));
}
//******************************************************************************
TEST(Similarity3, manifold_first_order) {
Similarity3 t1 = T;
Similarity3 t2 = T3;
Similarity3 origin;
Vector d12 = t1.localCoordinates(t2);
EXPECT(assert_equal(t2, t1.retract(d12)));
Vector d21 = t2.localCoordinates(t1);
EXPECT(assert_equal(t1, t2.retract(d21)));
}
//******************************************************************************
// Return as a 4*4 Matrix
TEST(Similarity3, Matrix) {
Matrix4 expected;
expected << 2, 0, 0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1;
Matrix4 actual = T4.matrix();
EXPECT(assert_equal(expected, actual));
}
//******************************************************************************
// Group action on Point3 (with simpler transform)
TEST(Similarity3, GroupAction) {
EXPECT(assert_equal(Point3(1, 1, 0), T4 * Point3(0, 0, 0)));
// Test actual group action on R^4
Vector4 qh;
qh << 1, 0, 0, 1;
Vector4 ph;
ph << 3, 1, 0, 1;
EXPECT(assert_equal((Vector )ph, T4.matrix() * qh));
// Test derivative
boost::function<Point3(Similarity3, Point3)> f = boost::bind(
&Similarity3::transform_from, _1, _2, boost::none, boost::none);
{ // T
Point3 q(1, 0, 0);
Matrix H1 = numericalDerivative21<Point3, Similarity3, Point3>(f, T, q);
Matrix H2 = numericalDerivative22<Point3, Similarity3, Point3>(f, T, q);
Matrix actualH1, actualH2;
T.transform_from(q, actualH1, actualH2);
EXPECT(assert_equal(H1, actualH1));
EXPECT(assert_equal(H2, actualH2));
}
{ // T4
Point3 q(1, 0, 0);
Matrix H1 = numericalDerivative21<Point3, Similarity3, Point3>(f, T4, q);
Matrix H2 = numericalDerivative22<Point3, Similarity3, Point3>(f, T4, q);
Matrix actualH1, actualH2;
Point3 p = T4.transform_from(q, actualH1, actualH2);
EXPECT(assert_equal(Point3(3, 1, 0), p));
EXPECT(assert_equal(Point3(3, 1, 0), T4 * q));
EXPECT(assert_equal(H1, actualH1));
EXPECT(assert_equal(H2, actualH2));
}
}
//******************************************************************************
// Test very simple prior optimization example
TEST(Similarity3, Optimization) {
// Create a PriorFactor with a Sim3 prior
Similarity3 prior = Similarity3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 2, 3), 4);
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7, 1);
Symbol key('x', 1);
PriorFactor<Similarity3> factor(key, prior, model);
// Create graph
NonlinearFactorGraph graph;
graph.push_back(factor);
// Create initial estimate with identity transform
Values initial;
initial.insert<Similarity3>(key, Similarity3());
// Optimize
Values result;
LevenbergMarquardtParams params;
params.setVerbosityLM("TRYCONFIG");
result = LevenbergMarquardtOptimizer(graph, initial).optimize();
// After optimization, result should be prior
EXPECT(assert_equal(prior, result.at<Similarity3>(key), 1e-4));
}
//******************************************************************************
// Test optimization with both Prior and BetweenFactors
TEST(Similarity3, Optimization2) {
Similarity3 prior = Similarity3();
Similarity3 m1 = Similarity3(Rot3::ypr(M_PI / 4.0, 0, 0), Point3(2.0, 0, 0),
1.0);
Similarity3 m2 = Similarity3(Rot3::ypr(M_PI / 2.0, 0, 0),
Point3(sqrt(8) * 0.9, 0, 0), 1.0);
Similarity3 m3 = Similarity3(Rot3::ypr(3 * M_PI / 4.0, 0, 0),
Point3(sqrt(32) * 0.8, 0, 0), 1.0);
Similarity3 m4 = Similarity3(Rot3::ypr(M_PI / 2.0, 0, 0),
Point3(6 * 0.7, 0, 0), 1.0);
Similarity3 loop = Similarity3(1.42);
//prior.print("Goal Transform");
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7,
0.01);
SharedDiagonal betweenNoise = noiseModel::Diagonal::Sigmas(
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 10).finished());
SharedDiagonal betweenNoise2 = noiseModel::Diagonal::Sigmas(
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0).finished());
PriorFactor<Similarity3> factor(X(1), prior, model); // Prior !
BetweenFactor<Similarity3> b1(X(1), X(2), m1, betweenNoise);
BetweenFactor<Similarity3> b2(X(2), X(3), m2, betweenNoise);
BetweenFactor<Similarity3> b3(X(3), X(4), m3, betweenNoise);
BetweenFactor<Similarity3> b4(X(4), X(5), m4, betweenNoise);
BetweenFactor<Similarity3> lc(X(5), X(1), loop, betweenNoise2);
// Create graph
NonlinearFactorGraph graph;
graph.push_back(factor);
graph.push_back(b1);
graph.push_back(b2);
graph.push_back(b3);
graph.push_back(b4);
graph.push_back(lc);
//graph.print("Full Graph\n");
Values initial;
initial.insert<Similarity3>(X(1), Similarity3());
initial.insert<Similarity3>(X(2),
Similarity3(Rot3::ypr(M_PI / 2.0, 0, 0), Point3(1, 0, 0), 1.1));
initial.insert<Similarity3>(X(3),
Similarity3(Rot3::ypr(2.0 * M_PI / 2.0, 0, 0), Point3(0.9, 1.1, 0), 1.2));
initial.insert<Similarity3>(X(4),
Similarity3(Rot3::ypr(3.0 * M_PI / 2.0, 0, 0), Point3(0, 1, 0), 1.3));
initial.insert<Similarity3>(X(5),
Similarity3(Rot3::ypr(4.0 * M_PI / 2.0, 0, 0), Point3(0, 0, 0), 1.0));
//initial.print("Initial Estimate\n");
Values result;
result = LevenbergMarquardtOptimizer(graph, initial).optimize();
//result.print("Optimized Estimate\n");
Pose3 p1, p2, p3, p4, p5;
p1 = Pose3(result.at<Similarity3>(X(1)));
p2 = Pose3(result.at<Similarity3>(X(2)));
p3 = Pose3(result.at<Similarity3>(X(3)));
p4 = Pose3(result.at<Similarity3>(X(4)));
p5 = Pose3(result.at<Similarity3>(X(5)));
//p1.print("Pose1");
//p2.print("Pose2");
//p3.print("Pose3");
//p4.print("Pose4");
//p5.print("Pose5");
Similarity3 expected(0.7);
EXPECT(assert_equal(expected, result.at<Similarity3>(X(5)), 0.4));
}
//******************************************************************************
// Align points (p,q) assuming that p = T*q + noise
TEST(Similarity3, AlignScaledPointClouds) {
// Create ground truth
Point3 q1(0, 0, 0), q2(1, 0, 0), q3(0, 1, 0);
// Create transformed cloud (noiseless)
// Point3 p1 = T4 * q1, p2 = T4 * q2, p3 = T4 * q3;
// Create an unknown expression
Expression<Similarity3> unknownT(0); // use key 0
// Create constant expressions for the ground truth points
Expression<Point3> q1_(q1), q2_(q2), q3_(q3);
// Create prediction expressions
Expression<Point3> predict1(unknownT, &Similarity3::transform_from, q1_);
Expression<Point3> predict2(unknownT, &Similarity3::transform_from, q2_);
Expression<Point3> predict3(unknownT, &Similarity3::transform_from, q3_);
//// Create Expression factor graph
// ExpressionFactorGraph graph;
// graph.addExpressionFactor(predict1, p1, R); // |T*q1 - p1|
// graph.addExpressionFactor(predict2, p2, R); // |T*q2 - p2|
// graph.addExpressionFactor(predict3, p3, R); // |T*q3 - p3|
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************