gtsam/cpp/Pose2Factor.h

68 lines
2.1 KiB
C++

/**
* @file Pose2Factor.H
* @authors Frank Dellaert, Viorela Ila
**/
#pragma once
#include <map>
#include "NonlinearFactor.h"
#include "GaussianFactor.h"
#include "VectorConfig.h"
#include "Pose2.h"
#include "Matrix.h"
#include "Pose2Config.h"
#include "ostream"
namespace gtsam {
class Pose2Factor : public NonlinearFactor<Pose2Config> {
private:
std::string key1_, key2_; /** The keys of the two poses, order matters */
Pose2 measured_;
Matrix square_root_inverse_covariance_; /** sqrt(inv(measurement_covariance)) */
public:
typedef boost::shared_ptr<Pose2Factor> shared_ptr; // shorthand for a smart pointer to a factor
Pose2Factor(const std::string& key1, const std::string& key2,
const Pose2& measured, const Matrix& measurement_covariance): key1_(key1),key2_(key2),measured_(measured) {
square_root_inverse_covariance_ = inverse_square_root(measurement_covariance);
}
/** implement functions needed for Testable */
void print(const std::string& name) const {
std::cout << name << std::endl;
std::cout << "Factor "<< std::endl;
std::cout << "key1 "<< key1_<<std::endl;
std::cout << "key2 "<< key2_<<std::endl;
measured_.print("measured ");
gtsam::print(square_root_inverse_covariance_,"MeasurementCovariance");
}
bool equals(const NonlinearFactor<Pose2Config>& expected, double tol) const {return false;}
/** implement functions needed to derive from Factor */
Vector error_vector(const Pose2Config& config) const {
//z-h
Pose2 p1 = config.get(key1_), p2 = config.get(key2_);
return (measured_ - between(p1,p2)).vector();
}
std::list<std::string> keys() const { std::list<std::string> l; return l; }
std::size_t size() const { return 2;}
/** linearize */
boost::shared_ptr<GaussianFactor> linearize(const Pose2Config& config) const {
Pose2 p1 = config.get(key1_), p2 = config.get(key2_);
Vector b = (measured_ - between(p1,p2)).vector();
Matrix H1 = Dbetween1(p1,p2);
Matrix H2 = Dbetween2(p1,p2);
boost::shared_ptr<GaussianFactor> linearized(new GaussianFactor(
key1_, square_root_inverse_covariance_ * H1,
key2_, square_root_inverse_covariance_ * H2,
b, 1.0));
return linearized;
}
};
} /// namespace gtsam