gtsam/matlab/examples/VisualISAMExample.m

184 lines
5.7 KiB
Matlab

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
% See LICENSE for the license information
%
% @brief A simple visual SLAM example for structure from motion
% @author Duy-Nguyen Ta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
%% Data Options
TRIANGLE = false;
NCAMERAS = 20;
SHOW_IMAGES = false;
%% iSAM Options
HARD_CONSTRAINT = false;
POINT_PRIORS = false;
BATCH_INIT = true;
REORDER_INTERVAL=10;
ALWAYS_RELINEARIZE = false;
%% Display Options
SAVE_GRAPH = false;
PRINT_STATS = true;
DRAW_INTERVAL = 20;
CAMERA_INTERVAL = 1;
DRAW_TRUE_POSES = false;
SAVE_FIGURES = false;
SAVE_GRAPHS = false;
%% Generate simulated data
if TRIANGLE % Create a triangle target, just 3 points on a plane
nPoints = 3;
r = 10;
for j=1:nPoints
theta = (j-1)*2*pi/nPoints;
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
end
else % 3D landmarks as vertices of a cube
nPoints = 8;
points = {gtsamPoint3([10 10 10]'),...
gtsamPoint3([-10 10 10]'),...
gtsamPoint3([-10 -10 10]'),...
gtsamPoint3([10 -10 10]'),...
gtsamPoint3([10 10 -10]'),...
gtsamPoint3([-10 10 -10]'),...
gtsamPoint3([-10 -10 -10]'),...
gtsamPoint3([10 -10 -10]')};
end
%% Create camera cameras on a circle around the triangle
height = 10; r = 40;
K = gtsamCal3_S2(500,500,0,640/2,480/2);
for i=1:NCAMERAS
theta = (i-1)*2*pi/NCAMERAS;
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K);
if SHOW_IMAGES % show images
figure(2+i);clf;hold on
set(2+i,'NumberTitle','off','Name',sprintf('Camera %d',i));
for j=1:nPoints
zij = cameras{i}.project(points{j});
plot(zij.x,zij.y,'*');
axis([1 640 1 480]);
end
end
end
odometry = cameras{1}.pose.between(cameras{2}.pose);
%% Set Noise parameters
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
%% Initialize iSAM
isam = visualSLAMISAM(REORDER_INTERVAL);
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
i1 = symbol('x',1);
camera1 = cameras{1};
pose1 = camera1.pose;
if HARD_CONSTRAINT % add hard constraint
newFactors.addPoseConstraint(i1,pose1);
else
newFactors.addPosePrior(i1,pose1, poseNoise);
end
initialEstimates.insertPose(i1,pose1);
% Add visual measurement factors from first pose
for j=1:nPoints
jj = symbol('l',j);
if POINT_PRIORS % add point priors
newFactors.addPointPrior(jj, points{j}, pointNoise);
end
zij = camera1.project(points{j});
newFactors.addMeasurement(zij, measurementNoise, i1, jj, K);
initialEstimates.insertPoint(jj, points{j});
end
%% Run iSAM Loop
figure(1);clf;hold on;
set(1,'NumberTitle','off','Name','iSAM timing');
for i=2:NCAMERAS
%% Add odometry
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise);
%% Add visual measurement factors
for j=1:nPoints
zij = cameras{i}.project(points{j});
newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
end
%% Initial estimates for the new pose. Also initialize points while in the first frame.
%TODO: this might be suboptimal since "result" is not the fully optimized result
if (i==2), prevPose = cameras{1}.pose;
else, prevPose = result.pose(symbol('x',i-1)); end
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
%% Update ISAM
if BATCH_INIT & (i==2) % Do a full optimize for first two poses
initialEstimates
fullyOptimized = newFactors.optimize(initialEstimates)
initialEstimates = fullyOptimized;
end
figure(1);tic;
isam.update(newFactors, initialEstimates);
t=toc; plot(i,t,'r.'); tic
result = isam.estimate();
t=toc; plot(i,t,'g.');
if ALWAYS_RELINEARIZE % re-linearize
isam.reorder_relinearize();
end
if SAVE_GRAPH
isam.saveGraph(sprintf('VisualiSAM.dot',i));
end
if PRINT_STATS
isam.printStats();
end
if mod(i,DRAW_INTERVAL)==0
%% Plot results
tic
h=figure(2);clf
set(1,'NumberTitle','off','Name','Visual iSAM');
hold on;
for j=1:size(points,2)
P = isam.marginalCovariance(symbol('l',j));
point_j = result.point(symbol('l',j));
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
end
for ii=1:CAMERA_INTERVAL:i
P = isam.marginalCovariance(symbol('x',ii));
pose_ii = result.pose(symbol('x',ii));
plotPose3(pose_ii,P,10);
if DRAW_TRUE_POSES % show ground truth
plotPose3(cameras{ii}.pose,0.001*eye(6),10);
end
end
axis([-40 40 -40 40 -10 20]);axis equal
view(3)
colormap('hot')
figure(2);
t=toc;
if DRAW_INTERVAL~=NCAMERAS, plot(i,t,'b.'); end
if SAVE_FIGURES
print(h,'-dpng',sprintf('VisualiSAM%03d.png',i));
end
if SAVE_GRAPHS
isam.saveGraph(sprintf('VisualiSAM%03d.dot',i));
end
end
%% Reset newFactors and initialEstimates to prepare for the next update
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
end