gtsam/matlab/unstable_examples/+imuSimulator/covarianceAnalysisBetween.m

219 lines
7.7 KiB
Matlab

import gtsam.*;
% Test GTSAM covariances on a graph with betweenFactors
% Authors: Luca Carlone, David Jensen
% Date: 2014/4/6
clc
clear all
close all
%% Configuration
useAspnData = 1; % controls whether or not to use the ASPN data for scenario 2 as the ground truth traj
%% Create ground truth trajectory
trajectoryLength = 49;
unsmooth_DP = 0.5; % controls smoothness on translation norm
unsmooth_DR = 0.1; % controls smoothness on rotation norm
gtValues = Values;
gtGraph = NonlinearFactorGraph;
if useAspnData == 1
sigma_ang = 1e-4;
sigma_cart = 40;
else
sigma_ang = 1e-2;
sigma_cart = 0.1;
end
noiseVector = [sigma_ang; sigma_ang; sigma_ang; sigma_cart; sigma_cart; sigma_cart];
noise = noiseModel.Diagonal.Sigmas(noiseVector);
if useAspnData == 1
% Create a ground truth trajectory using scenario 2 data
fprintf('\nUsing Scenario 2 ground truth data\n');
% load scenario 2 ground truth data
gtScenario2 = load('truth_scen2.mat', 'Lat', 'Lon', 'Alt', 'Roll', 'Pitch', 'Heading');
% Add first pose
currentPoseKey = symbol('x', 0);
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]);
initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
currentPose = Pose3.Expmap([initialRotation; initialPosition]); % initial pose
gtValues.insert(currentPoseKey, currentPose);
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noise));
prevPose = currentPose;
% Limit the trajectory length
trajectoryLength = min([length(gtScenario2.Lat) trajectoryLength]);
for i=2:trajectoryLength
currentPoseKey = symbol('x', i-1);
gtECEF = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(i); gtScenario2.Lon(i); gtScenario2.Alt(i)]);
gtRotation = [gtScenario2.Roll(i); gtScenario2.Pitch(i); gtScenario2.Heading(i)];
currentPose = Pose3.Expmap([gtRotation; gtECEF]);
% Generate measurements as the current pose measured in the frame of
% the previous pose
deltaPose = prevPose.between(currentPose);
gtDeltaMatrix(i-1,:) = Pose3.Logmap(deltaPose);
prevPose = currentPose;
% Add values
gtValues.insert(currentPoseKey, currentPose);
% Add the factor to the factor graph
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noise));
end
else
% Create a random trajectory as ground truth
fprintf('\nCreating a random ground truth trajectory\n');
% Add first pose
currentPoseKey = symbol('x', 0);
currentPose = Pose3; % initial pose
gtValues.insert(currentPoseKey, currentPose);
gtGraph.add(PriorFactorPose3(currentPoseKey, currentPose, noise));
for i=1:trajectoryLength
currentPoseKey = symbol('x', i);
gtDeltaPosition = unsmooth_DP*randn(3,1) + [20;0;0]; % create random vector with mean = [1 0 0] and sigma = 0.5
gtDeltaRotation = unsmooth_DR*randn(3,1) + [0;0;0]; % create random rotation with mean [0 0 0] and sigma = 0.1 (rad)
gtDeltaMatrix(i,:) = [gtDeltaRotation; gtDeltaPosition];
deltaPose = Pose3.Expmap(gtDeltaMatrix(i,:)');
% "Deduce" ground truth measurements
% deltaPose are the gt measurements - save them in some structure
currentPose = currentPose.compose(deltaPose);
gtValues.insert(currentPoseKey, currentPose);
% Add the factors to the factor graph
gtGraph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, deltaPose, noise));
end
end
figure(1)
hold on;
plot3DTrajectory(gtValues, '-r', [], 1, Marginals(gtGraph, gtValues));
axis equal
numMonteCarloRuns = 10;
for k=1:numMonteCarloRuns
fprintf('Monte Carlo Run %d.\n', k');
% create a new graph
graph = NonlinearFactorGraph;
% noisy prior
if useAspnData == 1
currentPoseKey = symbol('x', 0);
initialPosition = imuSimulator.LatLonHRad_to_ECEF([gtScenario2.Lat(1); gtScenario2.Lon(1); gtScenario2.Alt(1)]);
initialRotation = [gtScenario2.Roll(1); gtScenario2.Pitch(1); gtScenario2.Heading(1)];
initialPose = Pose3.Expmap([initialRotation; initialPosition] + (noiseVector .* randn(6,1))); % initial noisy pose
graph.add(PriorFactorPose3(currentPoseKey, currentPose, noise));
else
currentPoseKey = symbol('x', 0);
noisyDelta = noiseVector .* randn(6,1);
initialPose = Pose3.Expmap(noisyDelta);
graph.add(PriorFactorPose3(currentPoseKey, initialPose, noise));
end
for i=1:size(gtDeltaMatrix,1)
currentPoseKey = symbol('x', i);
% for each measurement: add noise and add to graph
noisyDelta = gtDeltaMatrix(i,:)';% + (noiseVector .* randn(6,1));
noisyDeltaPose = Pose3.Expmap(noisyDelta);
% Add the factors to the factor graph
graph.add(BetweenFactorPose3(currentPoseKey-1, currentPoseKey, noisyDeltaPose, noise));
end
% optimize
optimizer = GaussNewtonOptimizer(graph, gtValues);
estimate = optimizer.optimize();
figure(1)
plot3DTrajectory(estimate, '-b');
marginals = Marginals(graph, estimate);
% for each pose in the trajectory
for i=1:size(gtDeltaMatrix,1)+1
% compute estimation errors
currentPoseKey = symbol('x', i-1);
gtPosition = gtValues.at(currentPoseKey).translation.vector;
estPosition = estimate.at(currentPoseKey).translation.vector;
estR = estimate.at(currentPoseKey).rotation.matrix;
errPosition = estPosition - gtPosition;
% compute covariances:
cov = marginals.marginalCovariance(currentPoseKey);
covPosition = estR * cov(4:6,4:6) * estR';
% compute NEES using (estimationError = estimatedValues - gtValues) and estimated covariances
NEES(k,i) = errPosition' * inv(covPosition) * errPosition; % distributed according to a Chi square with n = 3 dof
end
figure(2)
hold on
plot(NEES(k,:),'-b','LineWidth',1.5)
end
%%
ANEES = mean(NEES);
plot(ANEES,'-r','LineWidth',2)
plot(3*ones(size(ANEES,2),1),'k--'); % Expectation(ANEES) = number of dof
box on
set(gca,'Fontsize',16)
title('NEES and ANEES');
%%
figure(1)
box on
set(gca,'Fontsize',16)
title('Ground truth and estimates for each MC runs');
%% Let us compute statistics on the overall NEES
n = 3; % position vector dimension
N = numMonteCarloRuns; % number of runs
alpha = 0.01; % confidence level
% mean_value = n*N; % mean value of the Chi-square distribution
% (we divide by n * N and for this reason we expect ANEES around 1)
r1 = chi2inv(alpha, n * N) / (n * N);
r2 = chi2inv(1-alpha, n * N) / (n * N);
% output here
fprintf(1, 'r1 = %g\n', r1);
fprintf(1, 'r2 = %g\n', r2);
figure(3)
hold on
plot(ANEES/n,'-b','LineWidth',2)
plot(ones(size(ANEES,2),1),'r-');
plot(r1*ones(size(ANEES,2),1),'k-.');
plot(r2*ones(size(ANEES,2),1),'k-.');
box on
set(gca,'Fontsize',16)
title('NEES normalized by dof VS bounds');
%% NEES COMPUTATION (Bar-Shalom 2001, Section 5.4)
% the nees for a single experiment (i) is defined as
% NEES_i = xtilda' * inv(P) * xtilda,
% where xtilda in R^n is the estimation
% error, and P is the covariance estimated by the approach we want to test
%
% Average NEES. Given N Monte Carlo simulations, i=1,...,N, the average
% NEES is:
% ANEES = sum(NEES_i)/N
% The quantity N*ANEES is distributed according to a Chi-square
% distribution with N*n degrees of freedom.
%
% For the single run case, N=1, therefore NEES = ANEES is distributed
% according to a chi-square distribution with n degrees of freedom (e.g. n=3
% if we are testing a position estimate)
% Therefore its mean should be n (difficult to see from a single run)
% and, with probability alpha, it should hold:
%
% NEES in [r1, r2]
%
% where r1 and r2 are built from the Chi-square distribution