gtsam/gtsam_unstable/examples/KITTItoBALConverter.cpp

285 lines
8.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file KITTItoBALConverter.cpp
* @brief Program for reading KITTI files and convert these ones to BAL format
* @date October, 2013
* @author Pablo F. Alcantarilla
*/
// Both relative poses and recovered trajectory poses will be stored as Pose3 objects
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Cal3DS2.h>
// Each variable in the system (poses and landmarks) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// We want to use iSAM2 to solve the range-SLAM problem incrementally
#include <gtsam/nonlinear/ISAM2.h>
// iSAM2 requires as input a set set of new factors to be added stored in a factor graph,
// and initial guesses for any new variables used in the added factors
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
// We will use a non-liear solver to batch-inituialize from the first 150 frames
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems.
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
// We need to use SFM_data to save it to BAL format
#include <gtsam/slam/dataset.h>
// Standard headers, added last, so we know headers above work on their own
#include <boost/foreach.hpp>
#include <boost/assign.hpp>
#include <boost/assign/std/vector.hpp>
#include <fstream>
#include <iostream>
using namespace std;
using namespace gtsam;
using namespace boost::assign;
namespace NM = gtsam::noiseModel;
using symbol_shorthand::X;
using symbol_shorthand::L;
typedef PriorFactor<Pose3> Pose3Prior;
/* ************************************************************************* */
//// Helper functions taken from VO code
// Loaded all pose values into list
Values::shared_ptr loadPoseValues(const string& filename) {
Values::shared_ptr values(new Values());
bool addNoise = false;
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
// read in camera poses
string full_filename = filename;
ifstream fin;
fin.open(full_filename.c_str());
int pose_id;
while (fin >> pose_id) {
double pose_matrix[16];
for (int i = 0; i < 16; i++) {
fin >> pose_matrix[i];
}
if (addNoise) {
values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix)).compose(noise_pose));
} else {
values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix)));
}
}
fin.close();
return values;
}
/* ************************************************************************* */
// Loaded specific pose values that are in key list
Values::shared_ptr loadPoseValues(const string& filename, list<Key> keys) {
Values::shared_ptr values(new Values());
std::list<Key>::iterator kit;
// read in camera poses
string full_filename = filename;
ifstream fin;
fin.open(full_filename.c_str());
int pose_id;
while (fin >> pose_id) {
double pose_matrix[16];
for (int i = 0; i < 16; i++) {
fin >> pose_matrix[i];
}
kit = find (keys.begin(), keys.end(), X(pose_id));
if (kit != keys.end()) {
cout << " Adding " << X(pose_id) << endl;
values->insert(Symbol('x',pose_id), Pose3(Matrix_(4, 4, pose_matrix)));
}
}
fin.close();
return values;
}
/* ************************************************************************* */
// Load calibration info
Cal3_S2::shared_ptr loadCalibration(const string& filename) {
string full_filename = filename;
ifstream fin;
fin.open(full_filename.c_str());
// try loading from parent directory as backup
if(!fin) {
cerr << "Could not load " << full_filename;
exit(1);
}
double fx, fy, s, u, v, b;
fin >> fx >> fy >> s >> u >> v >> b;
fin.close();
Cal3_S2::shared_ptr K(new Cal3_S2(fx, fy, s, u, v));
return K;
}
/* ************************************************************************* */
void writeValues(string directory_, const Values& values){
string filename = directory_ + "camera_poses.txt";
ofstream fout;
fout.open(filename.c_str());
fout.precision(20);
// write out camera poses
BOOST_FOREACH(Values::ConstFiltered<Pose3>::value_type key_value, values.filter<Pose3>()) {
fout << Symbol(key_value.key).index();
const gtsam::Matrix& matrix= key_value.value.matrix();
for (size_t row=0; row < 4; ++row) {
for (size_t col=0; col < 4; ++col) {
fout << " " << matrix(row, col);
}
}
fout << endl;
}
fout.close();
if(values.filter<Point3>().size() > 0) {
// write landmarks
filename = directory_ + "landmarks.txt";
fout.open(filename.c_str());
BOOST_FOREACH(Values::ConstFiltered<Point3>::value_type key_value, values.filter<Point3>()) {
fout << Symbol(key_value.key).index();
fout << " " << key_value.value.x();
fout << " " << key_value.value.y();
fout << " " << key_value.value.z();
fout << endl;
}
fout.close();
}
}
/* ************************************************************************* */
int main(int argc, char** argv) {
SfM_data kitti_sfm;
int ncameras = 0, npoints = 0, nobservations = 0;
bool debug = false;
// Minimum number of views of a landmark before it is added to the graph (SmartProjectionFactor case only)
unsigned int minimumNumViews = 1;
string HOME = getenv("HOME");
string input_dir = HOME + "/data/kitti/loop_closures_merged/";
string output_file = HOME + "/data/kitti/loop_closures_merged/loop_closures_merged_bal.txt";
typedef GenericProjectionFactor<Pose3, Point3, Cal3_S2> ProjectionFactor;
NonlinearFactorGraph graph;
// Load calibration
boost::shared_ptr<Cal3_S2> K = loadCalibration(input_dir+"calibration.txt");
Cal3Bundler Kd(K->fx(),0,0,K->px(),K->py());
K->print("Calibration");
// Load values from VO camera poses output
gtsam::Values::shared_ptr loaded_values = loadPoseValues(input_dir+"camera_poses.txt");
// Load camera poses
BOOST_FOREACH(Values::ConstFiltered<Pose3>::value_type key_value, loaded_values->filter<Pose3>()) {
Pose3 pose = key_value.value;
kitti_sfm.cameras.push_back(SfM_Camera(pose,Kd));
ncameras++;
}
// Read in kitti dataset
ifstream fin;
fin.open((input_dir+"stereo_factors.txt").c_str());
if(!fin) {
cerr << "Could not open stereo_factors.txt" << endl;
exit(1);
}
// Read all measurements tracked by VO stereo
cout << "Loading stereo_factors.txt" << endl;
Key r, l, currentLandmark = 0;
std::list<Key> allViews;
std::vector<Key> views;
std::vector<Point2> measurements;
Values values;
float uL, uR, v, x, y, z;
while (fin >> r >> l >> uL >> uR >> v >> x >> y >> z){
if (debug) cout << "CurrentLandmark " << currentLandmark << " Landmark " << l << std::endl;
if (loaded_values->exists<Point3>(L(l)) == boost::none) {
Pose3 camera = loaded_values->at<Pose3>(X(r));
Point3 worldPoint = camera.transform_from(Point3(x, y, z));
loaded_values->insert(L(l), worldPoint); // add point;
npoints++;
// Create a track without observations
SfM_Track track;
track.p = worldPoint;
track.r = .4;
track.g = .4;
track.b = .4;
kitti_sfm.tracks.push_back(track);
}
nobservations++;
}
fin.close();
// Open again the file to store the measurements
fin.open((input_dir+"sorted_contiguous_stereo_factors.txt").c_str());
if(!fin) {
cerr << "Could not open sorted_contiguous_stereo_factors.txt" << endl;
exit(1);
}
while (fin >> r >> l >> uL >> uR >> v >> x >> y >> z){
SfM_Measurement observation = make_pair(r,Point2(uL,v));
kitti_sfm.tracks[l].measurements.push_back(observation);
}
fin.close();
cout << "ncameras " << ncameras << " npoints " << npoints << endl;
cout << "nobservations " << nobservations << endl;
writeBAL(output_file,kitti_sfm);
exit(0);
}