390 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			390 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    testGaussianISAM.cpp
 | |
|  * @brief   Unit tests for GaussianISAM
 | |
|  * @author  Michael Kaess
 | |
|  */
 | |
| 
 | |
| #include <boost/foreach.hpp>
 | |
| #include <boost/assign/std/list.hpp> // for operator +=
 | |
| using namespace boost::assign;
 | |
| 
 | |
| #include <CppUnitLite/TestHarness.h>
 | |
| 
 | |
| // Magically casts strings like "x3" to a Symbol('x',3) key, see Key.h
 | |
| #define GTSAM_MAGIC_KEY
 | |
| 
 | |
| #include <gtsam/geometry/Rot2.h>
 | |
| #include <gtsam/nonlinear/Ordering.h>
 | |
| #include <gtsam/linear/GaussianBayesNet.h>
 | |
| #include <gtsam/inference/ISAM-inl.h>
 | |
| #include <gtsam/linear/GaussianISAM.h>
 | |
| #include <gtsam/linear/GaussianSequentialSolver.h>
 | |
| #include <gtsam/linear/GaussianMultifrontalSolver.h>
 | |
| #include <gtsam/slam/smallExample.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| using namespace example;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // Some numbers that should be consistent among all smoother tests
 | |
| 
 | |
| double sigmax1 = 0.786153, sigmax2 = 1.0/1.47292, sigmax3 = 0.671512, sigmax4 =
 | |
| 		0.669534, sigmax5 = sigmax3, sigmax6 = sigmax2, sigmax7 = sigmax1;
 | |
| 
 | |
| const double tol = 1e-4;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE( ISAM, iSAM_smoother )
 | |
| {
 | |
|   Ordering ordering;
 | |
|   for (int t = 1; t <= 7; t++) ordering += Symbol('x', t);
 | |
| 
 | |
|   // Create smoother with 7 nodes
 | |
| 	GaussianFactorGraph smoother = createSmoother(7, ordering).first;
 | |
| 
 | |
| 	// run iSAM for every factor
 | |
| 	GaussianISAM actual;
 | |
| 	BOOST_FOREACH(boost::shared_ptr<GaussianFactor> factor, smoother) {
 | |
| 		GaussianFactorGraph factorGraph;
 | |
| 		factorGraph.push_back(factor);
 | |
| 		actual.update(factorGraph);
 | |
| 	}
 | |
| 
 | |
| 	BayesTree<GaussianConditional>::shared_ptr bayesTree = GaussianMultifrontalSolver(smoother).eliminate();
 | |
| 	// Create expected Bayes Tree by solving smoother with "natural" ordering
 | |
| 	GaussianISAM expected(*bayesTree);
 | |
| 
 | |
| 	// Check whether BayesTree is correct
 | |
| 	EXPECT(assert_equal(expected, actual));
 | |
| 
 | |
| 	// obtain solution
 | |
| 	VectorValues e(vector<size_t>(7,2)); // expected solution
 | |
| 	e.makeZero();
 | |
| 	VectorValues optimized = optimize(actual); // actual solution
 | |
| 	EXPECT(assert_equal(e, optimized));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| // SL-FIX TEST( ISAM, iSAM_smoother2 )
 | |
| //{
 | |
| //	// Create smoother with 7 nodes
 | |
| //	GaussianFactorGraph smoother = createSmoother(7);
 | |
| //
 | |
| //	// Create initial tree from first 4 timestamps in reverse order !
 | |
| //	Ordering ord; ord += "x4","x3","x2","x1";
 | |
| //	GaussianFactorGraph factors1;
 | |
| //	for (int i=0;i<7;i++) factors1.push_back(smoother[i]);
 | |
| //	GaussianISAM actual(*Inference::Eliminate(factors1));
 | |
| //
 | |
| //	// run iSAM with remaining factors
 | |
| //	GaussianFactorGraph factors2;
 | |
| //	for (int i=7;i<13;i++) factors2.push_back(smoother[i]);
 | |
| //	actual.update(factors2);
 | |
| //
 | |
| //	// Create expected Bayes Tree by solving smoother with "natural" ordering
 | |
| //	Ordering ordering;
 | |
| //	for (int t = 1; t <= 7; t++) ordering += symbol('x', t);
 | |
| //	GaussianISAM expected(smoother.eliminate(ordering));
 | |
| //
 | |
| //	EXPECT(assert_equal(expected, actual));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* *
 | |
|  Bayes tree for smoother with "natural" ordering:
 | |
| C1 x6 x7
 | |
| C2   x5 : x6
 | |
| C3     x4 : x5
 | |
| C4       x3 : x4
 | |
| C5         x2 : x3
 | |
| C6           x1 : x2
 | |
| **************************************************************************** */
 | |
| TEST_UNSAFE( BayesTree, linear_smoother_shortcuts )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
|   Ordering ordering;
 | |
| 	GaussianFactorGraph smoother;
 | |
| 	boost::tie(smoother, ordering) = createSmoother(7);
 | |
| 
 | |
| 	BayesTree<GaussianConditional> bayesTree = *GaussianMultifrontalSolver(smoother).eliminate();
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	GaussianISAM isamTree(bayesTree);
 | |
| 	LONGS_EQUAL(6,isamTree.size());
 | |
| 
 | |
| 	// Check the conditional P(Root|Root)
 | |
| 	GaussianBayesNet empty;
 | |
| 	GaussianISAM::sharedClique R = isamTree.root();
 | |
| 	GaussianBayesNet actual1 = GaussianISAM::shortcut(R,R);
 | |
| 	EXPECT(assert_equal(empty,actual1,tol));
 | |
| 
 | |
| 	// Check the conditional P(C2|Root)
 | |
| 	GaussianISAM::sharedClique C2 = isamTree[ordering["x5"]];
 | |
| 	GaussianBayesNet actual2 = GaussianISAM::shortcut(C2,R);
 | |
| 	EXPECT(assert_equal(empty,actual2,tol));
 | |
| 
 | |
| 	// Check the conditional P(C3|Root)
 | |
| 	double sigma3 = 0.61808;
 | |
| 	Matrix A56 = Matrix_(2,2,-0.382022,0.,0.,-0.382022);
 | |
| 	GaussianBayesNet expected3;
 | |
| 	push_front(expected3,ordering["x5"], zero(2), eye(2)/sigma3, ordering["x6"], A56/sigma3, ones(2));
 | |
| 	GaussianISAM::sharedClique C3 = isamTree[ordering["x4"]];
 | |
| 	GaussianBayesNet actual3 = GaussianISAM::shortcut(C3,R);
 | |
| 	EXPECT(assert_equal(expected3,actual3,tol));
 | |
| 
 | |
| 	// Check the conditional P(C4|Root)
 | |
| 	double sigma4 = 0.661968;
 | |
| 	Matrix A46 = Matrix_(2,2,-0.146067,0.,0.,-0.146067);
 | |
| 	GaussianBayesNet expected4;
 | |
| 	push_front(expected4, ordering["x4"], zero(2), eye(2)/sigma4, ordering["x6"], A46/sigma4, ones(2));
 | |
| 	GaussianISAM::sharedClique C4 = isamTree[ordering["x3"]];
 | |
| 	GaussianBayesNet actual4 = GaussianISAM::shortcut(C4,R);
 | |
| 	EXPECT(assert_equal(expected4,actual4,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* *
 | |
|  Bayes tree for smoother with "nested dissection" ordering:
 | |
| 
 | |
| 	 Node[x1] P(x1 | x2)
 | |
| 	 Node[x3] P(x3 | x2 x4)
 | |
| 	 Node[x5] P(x5 | x4 x6)
 | |
| 	 Node[x7] P(x7 | x6)
 | |
| 	 Node[x2] P(x2 | x4)
 | |
| 	 Node[x6] P(x6 | x4)
 | |
| 	 Node[x4] P(x4)
 | |
| 
 | |
|  becomes
 | |
| 
 | |
| 	 C1		 x5 x6 x4
 | |
| 	 C2		  x3 x2 : x4
 | |
| 	 C3		    x1 : x2
 | |
| 	 C4		  x7 : x6
 | |
| 
 | |
| ************************************************************************* */
 | |
| TEST_UNSAFE( BayesTree, balanced_smoother_marginals )
 | |
| {
 | |
|   // Create smoother with 7 nodes
 | |
|   Ordering ordering;
 | |
|   ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
|   GaussianFactorGraph smoother = createSmoother(7, ordering).first;
 | |
| 
 | |
|   // Create the Bayes tree
 | |
|   BayesTree<GaussianConditional> chordalBayesNet = *GaussianMultifrontalSolver(smoother).eliminate();
 | |
| 
 | |
| 	VectorValues expectedSolution(7, 2);
 | |
| 	expectedSolution.makeZero();
 | |
| 	VectorValues actualSolution = optimize(chordalBayesNet);
 | |
| 	EXPECT(assert_equal(expectedSolution,actualSolution,tol));
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	GaussianISAM bayesTree(chordalBayesNet);
 | |
| 	LONGS_EQUAL(4,bayesTree.size());
 | |
| 
 | |
| 	double tol=1e-5;
 | |
| 
 | |
| 	// Check marginal on x1
 | |
| 	GaussianBayesNet expected1 = simpleGaussian(ordering["x1"], zero(2), sigmax1);
 | |
| 	GaussianBayesNet actual1 = *bayesTree.marginalBayesNet(ordering["x1"]);
 | |
| 	Matrix expectedCovarianceX1 = eye(2,2) * (sigmax1 * sigmax1);
 | |
| 	Matrix actualCovarianceX1;
 | |
| 	actualCovarianceX1 = bayesTree.marginalCovariance(ordering["x1"]);
 | |
| 	EXPECT(assert_equal(expectedCovarianceX1, actualCovarianceX1, tol));
 | |
| 	EXPECT(assert_equal(expected1,actual1,tol));
 | |
| 
 | |
| 	// Check marginal on x2
 | |
| 	double sigx2 = 0.68712938; // FIXME: this should be corrected analytically
 | |
| 	GaussianBayesNet expected2 = simpleGaussian(ordering["x2"], zero(2), sigx2);
 | |
| 	GaussianBayesNet actual2 = *bayesTree.marginalBayesNet(ordering["x2"]);
 | |
| 	Matrix expectedCovarianceX2 = eye(2,2) * (sigx2 * sigx2);
 | |
| 	Matrix actualCovarianceX2;
 | |
| 	actualCovarianceX2 = bayesTree.marginalCovariance(ordering["x2"]);
 | |
| 	EXPECT(assert_equal(expectedCovarianceX2, actualCovarianceX2, tol));
 | |
| 	EXPECT(assert_equal(expected2,actual2,tol));
 | |
| 
 | |
| 	// Check marginal on x3
 | |
| 	GaussianBayesNet expected3 = simpleGaussian(ordering["x3"], zero(2), sigmax3);
 | |
| 	GaussianBayesNet actual3 = *bayesTree.marginalBayesNet(ordering["x3"]);
 | |
| 	Matrix expectedCovarianceX3 = eye(2,2) * (sigmax3 * sigmax3);
 | |
| 	Matrix actualCovarianceX3;
 | |
| 	actualCovarianceX3 = bayesTree.marginalCovariance(ordering["x3"]);
 | |
| 	EXPECT(assert_equal(expectedCovarianceX3, actualCovarianceX3, tol));
 | |
| 	EXPECT(assert_equal(expected3,actual3,tol));
 | |
| 
 | |
| 	// Check marginal on x4
 | |
| 	GaussianBayesNet expected4 = simpleGaussian(ordering["x4"], zero(2), sigmax4);
 | |
| 	GaussianBayesNet actual4 = *bayesTree.marginalBayesNet(ordering["x4"]);
 | |
| 	Matrix expectedCovarianceX4 = eye(2,2) * (sigmax4 * sigmax4);
 | |
| 	Matrix actualCovarianceX4;
 | |
| 	actualCovarianceX4 = bayesTree.marginalCovariance(ordering["x4"]);
 | |
| 	EXPECT(assert_equal(expectedCovarianceX4, actualCovarianceX4, tol));
 | |
| 	EXPECT(assert_equal(expected4,actual4,tol));
 | |
| 
 | |
| 	// Check marginal on x7 (should be equal to x1)
 | |
| 	GaussianBayesNet expected7 = simpleGaussian(ordering["x7"], zero(2), sigmax7);
 | |
| 	GaussianBayesNet actual7 = *bayesTree.marginalBayesNet(ordering["x7"]);
 | |
| 	Matrix expectedCovarianceX7 = eye(2,2) * (sigmax7 * sigmax7);
 | |
| 	Matrix actualCovarianceX7;
 | |
| 	actualCovarianceX7 = bayesTree.marginalCovariance(ordering["x7"]);
 | |
| 	EXPECT(assert_equal(expectedCovarianceX7, actualCovarianceX7, tol));
 | |
| 	EXPECT(assert_equal(expected7,actual7,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE( BayesTree, balanced_smoother_shortcuts )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
|   Ordering ordering;
 | |
|   ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
| 	GaussianFactorGraph smoother = createSmoother(7, ordering).first;
 | |
| 
 | |
| 	// Create the Bayes tree
 | |
| 	BayesTree<GaussianConditional> bayesTree = *GaussianMultifrontalSolver(smoother).eliminate();
 | |
| 	GaussianISAM isamTree(bayesTree);
 | |
| 
 | |
| 	// Check the conditional P(Root|Root)
 | |
| 	GaussianBayesNet empty;
 | |
| 	GaussianISAM::sharedClique R = isamTree.root();
 | |
| 	GaussianBayesNet actual1 = GaussianISAM::shortcut(R,R);
 | |
| 	EXPECT(assert_equal(empty,actual1,tol));
 | |
| 
 | |
| 	// Check the conditional P(C2|Root)
 | |
| 	GaussianISAM::sharedClique C2 = isamTree[ordering["x3"]];
 | |
| 	GaussianBayesNet actual2 = GaussianISAM::shortcut(C2,R);
 | |
| 	EXPECT(assert_equal(empty,actual2,tol));
 | |
| 
 | |
| 	// Check the conditional P(C3|Root), which should be equal to P(x2|x4)
 | |
| 	/** TODO: Note for multifrontal conditional:
 | |
| 	 * p_x2_x4 is now an element conditional of the multifrontal conditional bayesTree[ordering["x2"]]->conditional()
 | |
| 	 * We don't know yet how to take it out.
 | |
| 	 */
 | |
| //	GaussianConditional::shared_ptr p_x2_x4 = bayesTree[ordering["x2"]]->conditional();
 | |
| //	p_x2_x4->print("Conditional p_x2_x4: ");
 | |
| //	GaussianBayesNet expected3(p_x2_x4);
 | |
| //	GaussianISAM::sharedClique C3 = isamTree[ordering["x1"]];
 | |
| //	GaussianBayesNet actual3 = GaussianISAM::shortcut(C3,R);
 | |
| //	EXPECT(assert_equal(expected3,actual3,tol));
 | |
| }
 | |
| 
 | |
| ///* ************************************************************************* */
 | |
| //TEST( BayesTree, balanced_smoother_clique_marginals )
 | |
| //{
 | |
| //  // Create smoother with 7 nodes
 | |
| //  Ordering ordering;
 | |
| //  ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
| //  GaussianFactorGraph smoother = createSmoother(7, ordering).first;
 | |
| //
 | |
| //  // Create the Bayes tree
 | |
| //  GaussianBayesNet chordalBayesNet = *GaussianSequentialSolver(smoother).eliminate();
 | |
| //  GaussianISAM bayesTree(chordalBayesNet);
 | |
| //
 | |
| //	// Check the clique marginal P(C3)
 | |
| //	double sigmax2_alt = 1/1.45533; // THIS NEEDS TO BE CHECKED!
 | |
| //	GaussianBayesNet expected = simpleGaussian(ordering["x2"],zero(2),sigmax2_alt);
 | |
| //	push_front(expected,ordering["x1"], zero(2), eye(2)*sqrt(2), ordering["x2"], -eye(2)*sqrt(2)/2, ones(2));
 | |
| //	GaussianISAM::sharedClique R = bayesTree.root(), C3 = bayesTree[ordering["x1"]];
 | |
| //	GaussianFactorGraph marginal = C3->marginal(R);
 | |
| //	GaussianVariableIndex varIndex(marginal);
 | |
| //	Permutation toFront(Permutation::PullToFront(C3->keys(), varIndex.size()));
 | |
| //	Permutation toFrontInverse(*toFront.inverse());
 | |
| //	varIndex.permute(toFront);
 | |
| //	BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, marginal) {
 | |
| //	  factor->permuteWithInverse(toFrontInverse); }
 | |
| //	GaussianBayesNet actual = *Inference::EliminateUntil(marginal, C3->keys().size(), varIndex);
 | |
| //	actual.permuteWithInverse(toFront);
 | |
| //	EXPECT(assert_equal(expected,actual,tol));
 | |
| //}
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE( BayesTree, balanced_smoother_joint )
 | |
| {
 | |
| 	// Create smoother with 7 nodes
 | |
| 	Ordering ordering;
 | |
| 	ordering += "x1","x3","x5","x7","x2","x6","x4";
 | |
| 	GaussianFactorGraph smoother = createSmoother(7, ordering).first;
 | |
| 
 | |
| 	// Create the Bayes tree, expected to look like:
 | |
| 	//	 x5 x6 x4
 | |
| 	//	   x3 x2 : x4
 | |
| 	//	     x1 : x2
 | |
| 	//	   x7 : x6
 | |
| 	BayesTree<GaussianConditional> chordalBayesNet = *GaussianMultifrontalSolver(smoother).eliminate();
 | |
| 	GaussianISAM bayesTree(chordalBayesNet);
 | |
| 
 | |
| 	// Conditional density elements reused by both tests
 | |
| 	const Vector sigma = ones(2);
 | |
| 	const Matrix I = eye(2), A = -0.00429185*I;
 | |
| 
 | |
| 	// Check the joint density P(x1,x7) factored as P(x1|x7)P(x7)
 | |
| 	GaussianBayesNet expected1;
 | |
| 	// Why does the sign get flipped on the prior?
 | |
| 	GaussianConditional::shared_ptr
 | |
| 		parent1(new GaussianConditional(ordering["x7"], zero(2), -1*I/sigmax7, ones(2)));
 | |
| 	expected1.push_front(parent1);
 | |
| 	push_front(expected1,ordering["x1"], zero(2), I/sigmax7, ordering["x7"], A/sigmax7, sigma);
 | |
| 	GaussianBayesNet actual1 = *bayesTree.jointBayesNet(ordering["x1"],ordering["x7"]);
 | |
| 	EXPECT(assert_equal(expected1,actual1,tol));
 | |
| 
 | |
| //	// Check the joint density P(x7,x1) factored as P(x7|x1)P(x1)
 | |
| //	GaussianBayesNet expected2;
 | |
| //	GaussianConditional::shared_ptr
 | |
| //			parent2(new GaussianConditional(ordering["x1"], zero(2), -1*I/sigmax1, ones(2)));
 | |
| //		expected2.push_front(parent2);
 | |
| //	push_front(expected2,ordering["x7"], zero(2), I/sigmax1, ordering["x1"], A/sigmax1, sigma);
 | |
| //	GaussianBayesNet actual2 = *bayesTree.jointBayesNet(ordering["x7"],ordering["x1"]);
 | |
| //	EXPECT(assert_equal(expected2,actual2,tol));
 | |
| 
 | |
| 	// Check the joint density P(x1,x4), i.e. with a root variable
 | |
| 	GaussianBayesNet expected3;
 | |
| 	GaussianConditional::shared_ptr
 | |
| 			parent3(new GaussianConditional(ordering["x4"], zero(2), I/sigmax4, ones(2)));
 | |
| 		expected3.push_front(parent3);
 | |
| 	double sig14 = 0.784465;
 | |
| 	Matrix A14 = -0.0769231*I;
 | |
| 	push_front(expected3,ordering["x1"], zero(2), I/sig14, ordering["x4"], A14/sig14, sigma);
 | |
| 	GaussianBayesNet actual3 = *bayesTree.jointBayesNet(ordering["x1"],ordering["x4"]);
 | |
| 	EXPECT(assert_equal(expected3,actual3,tol));
 | |
| 
 | |
| //	// Check the joint density P(x4,x1), i.e. with a root variable, factored the other way
 | |
| //	GaussianBayesNet expected4;
 | |
| //	GaussianConditional::shared_ptr
 | |
| //			parent4(new GaussianConditional(ordering["x1"], zero(2), -1.0*I/sigmax1, ones(2)));
 | |
| //		expected4.push_front(parent4);
 | |
| //	double sig41 = 0.668096;
 | |
| //	Matrix A41 = -0.055794*I;
 | |
| //	push_front(expected4,ordering["x4"], zero(2), I/sig41, ordering["x1"], A41/sig41, sigma);
 | |
| //	GaussianBayesNet actual4 = *bayesTree.jointBayesNet(ordering["x4"],ordering["x1"]);
 | |
| //	EXPECT(assert_equal(expected4,actual4,tol));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| TEST_UNSAFE(BayesTree, simpleMarginal)
 | |
| {
 | |
|   GaussianFactorGraph gfg;
 | |
| 
 | |
|   Matrix A12 = Rot2::fromDegrees(45.0).matrix();
 | |
| 
 | |
|   gfg.add(0, eye(2), zero(2), sharedSigma(2, 1.0));
 | |
|   gfg.add(0, -eye(2), 1, eye(2), ones(2), sharedSigma(2, 1.0));
 | |
|   gfg.add(1, -eye(2), 2, A12, ones(2), sharedSigma(2, 1.0));
 | |
| 
 | |
|   Matrix expected(GaussianSequentialSolver(gfg).marginalCovariance(2));
 | |
|   Matrix actual(GaussianMultifrontalSolver(gfg).marginalCovariance(2));
 | |
| 
 | |
|   EXPECT(assert_equal(expected, actual));
 | |
| }
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | |
| /* ************************************************************************* */
 |