145 lines
5.2 KiB
C++
145 lines
5.2 KiB
C++
/**
|
|
* @file LPInitSolverMatlab.h
|
|
* @brief This LPInitSolver implements the strategy in Matlab:
|
|
* @author Ivan Dario Jimenez
|
|
* @date 1/24/16
|
|
*/
|
|
|
|
|
|
#pragma once
|
|
|
|
#include <gtsam_unstable/linear/LPInitSolver.h>
|
|
#include <gtsam_unstable/linear/InfeasibleOrUnboundedProblem.h>
|
|
|
|
|
|
namespace gtsam {
|
|
/**
|
|
* This LPInitSolver implements the strategy in Matlab:
|
|
* http://www.mathworks.com/help/optim/ug/linear-programming-algorithms.html#brozyzb-9
|
|
* Solve for x and y:
|
|
* min y
|
|
* st Ax = b
|
|
* Cx - y <= d
|
|
* where y \in R, x \in R^n, and Ax = b and Cx <= d is the constraints of the original problem.
|
|
*
|
|
* If the solution for this problem {x*,y*} has y* <= 0, we'll have x* a feasible initial point
|
|
* of the original problem
|
|
* otherwise, if y* > 0 or the problem has no solution, the original problem is infeasible.
|
|
*
|
|
* The initial value of this initial problem can be found by solving
|
|
* min ||x||^2
|
|
* s.t. Ax = b
|
|
* to have a solution x0
|
|
* then y = max_j ( Cj*x0 - dj ) -- due to the constraints y >= Cx - d
|
|
*
|
|
* WARNING: If some xj in the inequality constraints does not exist in the equality constraints,
|
|
* set them as zero for now. If that is the case, the original problem doesn't have a unique
|
|
* solution (it could be either infeasible or unbounded).
|
|
* So, if the initialization fails because we enforce xj=0 in the problematic
|
|
* inequality constraint, we can't conclude that the problem is infeasible.
|
|
* However, whether it is infeasible or unbounded, we don't have a unique solution anyway.
|
|
*/
|
|
class LPInitSolverMatlab : public LPInitSolver {
|
|
typedef LPInitSolver Base;
|
|
public:
|
|
LPInitSolverMatlab(const LPSolver& lpSolver) : Base(lpSolver) {}
|
|
virtual ~LPInitSolverMatlab() {}
|
|
|
|
virtual VectorValues solve() const {
|
|
// Build the graph to solve for the initial value of the initial problem
|
|
GaussianFactorGraph::shared_ptr initOfInitGraph = buildInitOfInitGraph();
|
|
VectorValues x0 = initOfInitGraph->optimize();
|
|
double y0 = compute_y0(x0);
|
|
Key yKey = maxKey(lpSolver_.keysDim()) + 1; // the unique key for y0
|
|
VectorValues xy0(x0);
|
|
xy0.insert(yKey, Vector::Constant(1, y0));
|
|
|
|
// Formulate and solve the initial LP
|
|
LP::shared_ptr initLP = buildInitialLP(yKey);
|
|
|
|
// solve the initialLP
|
|
LPSolver lpSolveInit(*initLP);
|
|
VectorValues xyInit = lpSolveInit.optimize(xy0).first;
|
|
double yOpt = xyInit.at(yKey)[0];
|
|
xyInit.erase(yKey);
|
|
if ( yOpt > 0)
|
|
throw InfeasibleOrUnboundedProblem();
|
|
else
|
|
return xyInit;
|
|
}
|
|
|
|
private:
|
|
/// build initial LP
|
|
LP::shared_ptr buildInitialLP(Key yKey) const {
|
|
LP::shared_ptr initLP(new LP());
|
|
initLP->cost = LinearCost(yKey, ones(1)); // min y
|
|
initLP->equalities = lp_.equalities; // st. Ax = b
|
|
initLP->inequalities = addSlackVariableToInequalities(yKey, lp_.inequalities); // Cx-y <= d
|
|
return initLP;
|
|
}
|
|
|
|
/// Find the max key in the problem to determine unique keys for additional slack variables
|
|
Key maxKey(const KeyDimMap& keysDim) const {
|
|
Key maxK = 0;
|
|
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys)
|
|
if (maxK < key)
|
|
maxK = key;
|
|
return maxK;
|
|
}
|
|
|
|
/**
|
|
* Build the following graph to solve for an initial value of the initial problem
|
|
* min ||x||^2 s.t. Ax = b
|
|
*/
|
|
GaussianFactorGraph::shared_ptr buildInitOfInitGraph() const {
|
|
// first add equality constraints Ax = b
|
|
GaussianFactorGraph::shared_ptr initGraph(new GaussianFactorGraph(lp_.equalities));
|
|
|
|
// create factor ||x||^2 and add to the graph
|
|
const KeyDimMap& keysDim = lpSolver_.keysDim();
|
|
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) {
|
|
size_t dim = keysDim.at(key);
|
|
initGraph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
|
|
}
|
|
return initGraph;
|
|
}
|
|
|
|
/// y = max_j ( Cj*x0 - dj ) -- due to the inequality constraints y >= Cx - d
|
|
double compute_y0(const VectorValues& x0) const {
|
|
double y0 = -std::numeric_limits<double>::infinity();
|
|
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) {
|
|
double error = factor->error(x0);
|
|
if (error > y0)
|
|
y0 = error;
|
|
}
|
|
return y0;
|
|
}
|
|
|
|
|
|
/// Collect all terms of a factor into a container.
|
|
std::vector<std::pair<Key, Matrix> > collectTerms(const LinearInequality& factor) const {
|
|
std::vector<std::pair<Key, Matrix> > terms;
|
|
for (Factor::const_iterator it = factor.begin(); it != factor.end(); it++) {
|
|
terms.push_back(make_pair(*it, factor.getA(it)));
|
|
}
|
|
return terms;
|
|
}
|
|
|
|
/// Turn Cx <= d into Cx - y <= d factors
|
|
InequalityFactorGraph addSlackVariableToInequalities(Key yKey,
|
|
const InequalityFactorGraph& inequalities) const {
|
|
InequalityFactorGraph slackInequalities;
|
|
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, lp_.inequalities) {
|
|
std::vector<std::pair<Key, Matrix> > terms = collectTerms(*factor); // Cx
|
|
terms.push_back(make_pair(yKey, Matrix::Constant(1, 1, -1.0)));// -y
|
|
double d = factor->getb()[0];
|
|
slackInequalities.push_back(LinearInequality(terms, d, factor->dualKey()));
|
|
}
|
|
return slackInequalities;
|
|
}
|
|
|
|
// friend class for unit-testing private methods
|
|
FRIEND_TEST(LPInitSolverMatlab, initialization);
|
|
};
|
|
}
|