821 lines
29 KiB
C++
821 lines
29 KiB
C++
/**
|
|
* @file testGaussianISAM2.cpp
|
|
* @brief Unit tests for GaussianISAM2
|
|
* @author Michael Kaess
|
|
*/
|
|
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
|
|
#include <tests/smallExample.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/sam/BearingRangeFactor.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/Marginals.h>
|
|
#include <gtsam/linear/GaussianBayesNet.h>
|
|
#include <gtsam/linear/GaussianBayesTree.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
#include <gtsam/inference/Ordering.h>
|
|
#include <gtsam/base/debug.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <gtsam/base/treeTraversal-inst.h>
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
#include <boost/range/adaptor/map.hpp>
|
|
namespace br { using namespace boost::adaptors; using namespace boost::range; }
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
using boost::shared_ptr;
|
|
|
|
static const SharedNoiseModel model;
|
|
|
|
// SETDEBUG("ISAM2 update", true);
|
|
// SETDEBUG("ISAM2 update verbose", true);
|
|
// SETDEBUG("ISAM2 recalculate", true);
|
|
|
|
// Set up parameters
|
|
SharedDiagonal odoNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.1, 0.1, M_PI/100.0).finished());
|
|
SharedDiagonal brNoise = noiseModel::Diagonal::Sigmas((Vector(2) << M_PI/100.0, 0.1).finished());
|
|
|
|
ISAM2 createSlamlikeISAM2(
|
|
boost::optional<Values&> init_values = boost::none,
|
|
boost::optional<NonlinearFactorGraph&> full_graph = boost::none,
|
|
const ISAM2Params& params = ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0,
|
|
0, false, true,
|
|
ISAM2Params::CHOLESKY, true,
|
|
DefaultKeyFormatter, true),
|
|
size_t maxPoses = 10) {
|
|
// These variables will be reused and accumulate factors and values
|
|
ISAM2 isam(params);
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
|
|
// i keeps track of the time step
|
|
size_t i = 0;
|
|
|
|
// Add a prior at time 0 and update isam
|
|
{
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
if(i > maxPoses)
|
|
goto done;
|
|
|
|
// Add odometry from time 0 to time 5
|
|
for( ; i<5; ++i) {
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
|
|
if(i > maxPoses)
|
|
goto done;
|
|
}
|
|
|
|
if(i > maxPoses)
|
|
goto done;
|
|
|
|
// Add odometry from time 5 to 6 and landmark measurement at time 5
|
|
{
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
|
|
isam.update(newfactors, init);
|
|
++ i;
|
|
}
|
|
|
|
if(i > maxPoses)
|
|
goto done;
|
|
|
|
// Add odometry from time 6 to time 10
|
|
for( ; i<10; ++i) {
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
|
|
if(i > maxPoses)
|
|
goto done;
|
|
}
|
|
|
|
if(i > maxPoses)
|
|
goto done;
|
|
|
|
// Add odometry from time 10 to 11 and landmark measurement at time 10
|
|
{
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
++ i;
|
|
}
|
|
|
|
done:
|
|
|
|
if (full_graph)
|
|
*full_graph = fullgraph;
|
|
|
|
if (init_values)
|
|
*init_values = fullinit;
|
|
|
|
return isam;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
//TEST(ISAM2, CheckRelinearization) {
|
|
//
|
|
// typedef GaussianISAM2<Values>::Impl Impl;
|
|
//
|
|
// // Create values where indices 1 and 3 are above the threshold of 0.1
|
|
// VectorValues values;
|
|
// values.reserve(4, 10);
|
|
// values.push_back_preallocated(Vector2(0.09, 0.09));
|
|
// values.push_back_preallocated(Vector3(0.11, 0.11, 0.09));
|
|
// values.push_back_preallocated(Vector3(0.09, 0.09, 0.09));
|
|
// values.push_back_preallocated(Vector2(0.11, 0.11));
|
|
//
|
|
// // Create a permutation
|
|
// Permutation permutation(4);
|
|
// permutation[0] = 2;
|
|
// permutation[1] = 0;
|
|
// permutation[2] = 1;
|
|
// permutation[3] = 3;
|
|
//
|
|
// Permuted<VectorValues> permuted(permutation, values);
|
|
//
|
|
// // After permutation, the indices above the threshold are 2 and 2
|
|
// KeySet expected;
|
|
// expected.insert(2);
|
|
// expected.insert(3);
|
|
//
|
|
// // Indices checked by CheckRelinearization
|
|
// KeySet actual = Impl::CheckRelinearization(permuted, 0.1);
|
|
//
|
|
// EXPECT(assert_equal(expected, actual));
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
struct ConsistencyVisitor
|
|
{
|
|
bool consistent;
|
|
const ISAM2& isam;
|
|
ConsistencyVisitor(const ISAM2& isam) :
|
|
consistent(true), isam(isam) {}
|
|
int operator()(const ISAM2::sharedClique& node, int& parentData)
|
|
{
|
|
if(find(isam.roots().begin(), isam.roots().end(), node) == isam.roots().end())
|
|
{
|
|
if(node->parent_.expired())
|
|
consistent = false;
|
|
if(find(node->parent()->children.begin(), node->parent()->children.end(), node) == node->parent()->children.end())
|
|
consistent = false;
|
|
}
|
|
for(Key j: node->conditional()->frontals())
|
|
{
|
|
if(isam.nodes().at(j).get() != node.get())
|
|
consistent = false;
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
/* ************************************************************************* */
|
|
bool isam_check(const NonlinearFactorGraph& fullgraph, const Values& fullinit, const ISAM2& isam, Test& test, TestResult& result) {
|
|
|
|
TestResult& result_ = result;
|
|
const string name_ = test.getName();
|
|
|
|
Values actual = isam.calculateEstimate();
|
|
Values expected = fullinit.retract(fullgraph.linearize(fullinit)->optimize());
|
|
|
|
bool isamEqual = assert_equal(expected, actual);
|
|
|
|
// Check information
|
|
GaussianFactorGraph isamGraph(isam);
|
|
isamGraph += isam.roots().front()->cachedFactor_;
|
|
Matrix expectedHessian = fullgraph.linearize(isam.getLinearizationPoint())->augmentedHessian();
|
|
Matrix actualHessian = isamGraph.augmentedHessian();
|
|
expectedHessian.bottomRightCorner(1,1) = actualHessian.bottomRightCorner(1,1);
|
|
bool isamTreeEqual = assert_equal(expectedHessian, actualHessian);
|
|
|
|
// Check consistency
|
|
ConsistencyVisitor visitor(isam);
|
|
int data; // Unused
|
|
treeTraversal::DepthFirstForest(isam, data, visitor);
|
|
bool consistent = visitor.consistent;
|
|
|
|
// The following two checks make sure that the cached gradients are maintained and used correctly
|
|
|
|
// Check gradient at each node
|
|
bool nodeGradientsOk = true;
|
|
typedef ISAM2::sharedClique sharedClique;
|
|
for(const sharedClique& clique: isam.nodes() | br::map_values) {
|
|
// Compute expected gradient
|
|
GaussianFactorGraph jfg;
|
|
jfg += clique->conditional();
|
|
VectorValues expectedGradient = jfg.gradientAtZero();
|
|
// Compare with actual gradients
|
|
DenseIndex variablePosition = 0;
|
|
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
|
|
const DenseIndex dim = clique->conditional()->getDim(jit);
|
|
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
|
|
bool gradOk = assert_equal(expectedGradient[*jit], actual);
|
|
EXPECT(gradOk);
|
|
nodeGradientsOk = nodeGradientsOk && gradOk;
|
|
variablePosition += dim;
|
|
}
|
|
bool dimOk = clique->gradientContribution().rows() == variablePosition;
|
|
EXPECT(dimOk);
|
|
nodeGradientsOk = nodeGradientsOk && dimOk;
|
|
}
|
|
|
|
// Check gradient
|
|
VectorValues expectedGradient = GaussianFactorGraph(isam).gradientAtZero();
|
|
VectorValues expectedGradient2 = GaussianFactorGraph(isam).gradient(VectorValues::Zero(expectedGradient));
|
|
VectorValues actualGradient = isam.gradientAtZero();
|
|
bool expectedGradOk = assert_equal(expectedGradient2, expectedGradient);
|
|
EXPECT(expectedGradOk);
|
|
bool totalGradOk = assert_equal(expectedGradient, actualGradient);
|
|
EXPECT(totalGradOk);
|
|
|
|
return nodeGradientsOk && expectedGradOk && totalGradOk && isamEqual && isamTreeEqual && consistent;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, simple)
|
|
{
|
|
for(size_t i = 0; i < 10; ++i) {
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false), i);
|
|
|
|
// Compare solutions
|
|
EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_gaussnewton)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_dogleg)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_gaussnewton_qr)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false, false, ISAM2Params::QR));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_dogleg_qr)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2DoglegParams(1.0), 0.0, 0, false, false, ISAM2Params::QR));
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, clone) {
|
|
|
|
ISAM2 clone1;
|
|
|
|
{
|
|
ISAM2 isam = createSlamlikeISAM2();
|
|
clone1 = isam;
|
|
|
|
ISAM2 clone2(isam);
|
|
|
|
// Modify original isam
|
|
NonlinearFactorGraph factors;
|
|
factors += BetweenFactor<Pose2>(0, 10,
|
|
isam.calculateEstimate<Pose2>(0).between(isam.calculateEstimate<Pose2>(10)), noiseModel::Unit::Create(3));
|
|
isam.update(factors);
|
|
|
|
CHECK(assert_equal(createSlamlikeISAM2(), clone2));
|
|
}
|
|
|
|
// This is to (perhaps unsuccessfully) try to currupt unallocated memory referenced
|
|
// if the references in the iSAM2 copy point to the old instance which deleted at
|
|
// the end of the {...} section above.
|
|
ISAM2 temp = createSlamlikeISAM2();
|
|
|
|
CHECK(assert_equal(createSlamlikeISAM2(), clone1));
|
|
CHECK(assert_equal(clone1, temp));
|
|
|
|
// Check clone empty
|
|
ISAM2 isam;
|
|
clone1 = isam;
|
|
CHECK(assert_equal(ISAM2(), clone1));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, removeFactors)
|
|
{
|
|
// This test builds a graph in the same way as the "slamlike" test above, but
|
|
// then removes the 2nd-to-last landmark measurement
|
|
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
|
|
// Remove the 2nd measurement on landmark 0 (Key 100)
|
|
FactorIndices toRemove;
|
|
toRemove.push_back(12);
|
|
isam.update(NonlinearFactorGraph(), Values(), toRemove);
|
|
|
|
// Remove the factor from the full system
|
|
fullgraph.remove(12);
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, removeVariables)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
|
|
// Remove the measurement on landmark 0 (Key 100)
|
|
FactorIndices toRemove;
|
|
toRemove.push_back(7);
|
|
toRemove.push_back(14);
|
|
isam.update(NonlinearFactorGraph(), Values(), toRemove);
|
|
|
|
// Remove the factors and variable from the full system
|
|
fullgraph.remove(7);
|
|
fullgraph.remove(14);
|
|
fullinit.erase(100);
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, swapFactors)
|
|
{
|
|
// This test builds a graph in the same way as the "slamlike" test above, but
|
|
// then swaps the 2nd-to-last landmark measurement with a different one
|
|
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph);
|
|
|
|
// Remove the measurement on landmark 0 and replace with a different one
|
|
{
|
|
size_t swap_idx = isam.getFactorsUnsafe().size()-2;
|
|
FactorIndices toRemove;
|
|
toRemove.push_back(swap_idx);
|
|
fullgraph.remove(swap_idx);
|
|
|
|
NonlinearFactorGraph swapfactors;
|
|
// swapfactors += BearingRange<Pose2,Point2>(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise; // original factor
|
|
swapfactors += BearingRangeFactor<Pose2,Point2>(10, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 5.0, brNoise);
|
|
fullgraph.push_back(swapfactors);
|
|
isam.update(swapfactors, Values(), toRemove);
|
|
}
|
|
|
|
// Compare solutions
|
|
EXPECT(assert_equal(fullgraph, NonlinearFactorGraph(isam.getFactorsUnsafe())));
|
|
EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
|
|
// Check gradient at each node
|
|
typedef ISAM2::sharedClique sharedClique;
|
|
for(const sharedClique& clique: isam.nodes() | br::map_values) {
|
|
// Compute expected gradient
|
|
GaussianFactorGraph jfg;
|
|
jfg += clique->conditional();
|
|
VectorValues expectedGradient = jfg.gradientAtZero();
|
|
// Compare with actual gradients
|
|
DenseIndex variablePosition = 0;
|
|
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
|
|
const DenseIndex dim = clique->conditional()->getDim(jit);
|
|
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
|
|
EXPECT(assert_equal(expectedGradient[*jit], actual));
|
|
variablePosition += dim;
|
|
}
|
|
EXPECT_LONGS_EQUAL((long)clique->gradientContribution().rows(), (long)variablePosition);
|
|
}
|
|
|
|
// Check gradient
|
|
VectorValues expectedGradient = GaussianFactorGraph(isam).gradientAtZero();
|
|
VectorValues expectedGradient2 = GaussianFactorGraph(isam).gradient(VectorValues::Zero(expectedGradient));
|
|
VectorValues actualGradient = isam.gradientAtZero();
|
|
EXPECT(assert_equal(expectedGradient2, expectedGradient));
|
|
EXPECT(assert_equal(expectedGradient, actualGradient));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, constrained_ordering)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
ISAM2 isam(ISAM2Params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false));
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
|
|
// We will constrain x3 and x4 to the end
|
|
FastMap<Key, int> constrained;
|
|
constrained.insert(make_pair((3), 1));
|
|
constrained.insert(make_pair((4), 2));
|
|
|
|
// i keeps track of the time step
|
|
size_t i = 0;
|
|
|
|
// Add a prior at time 0 and update isam
|
|
{
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
fullinit.insert((0), Pose2(0.01, 0.01, 0.01));
|
|
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
|
|
// Add odometry from time 0 to time 5
|
|
for( ; i<5; ++i) {
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
if(i >= 3)
|
|
isam.update(newfactors, init, FactorIndices(), constrained);
|
|
else
|
|
isam.update(newfactors, init);
|
|
}
|
|
|
|
// Add odometry from time 5 to 6 and landmark measurement at time 5
|
|
{
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
init.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
init.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
fullinit.insert((i+1), Pose2(1.01, 0.01, 0.01));
|
|
fullinit.insert(100, Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
|
|
fullinit.insert(101, Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
|
|
|
|
isam.update(newfactors, init, FactorIndices(), constrained);
|
|
++ i;
|
|
}
|
|
|
|
// Add odometry from time 6 to time 10
|
|
for( ; i<10; ++i) {
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
|
|
|
|
isam.update(newfactors, init, FactorIndices(), constrained);
|
|
}
|
|
|
|
// Add odometry from time 10 to 11 and landmark measurement at time 10
|
|
{
|
|
NonlinearFactorGraph newfactors;
|
|
newfactors += BetweenFactor<Pose2>(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 100, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
newfactors += BearingRangeFactor<Pose2,Point2>(i, 101, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
|
|
fullgraph.push_back(newfactors);
|
|
|
|
Values init;
|
|
init.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
fullinit.insert((i+1), Pose2(6.9, 0.1, 0.01));
|
|
|
|
isam.update(newfactors, init, FactorIndices(), constrained);
|
|
++ i;
|
|
}
|
|
|
|
// Compare solutions
|
|
EXPECT(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
|
|
// Check gradient at each node
|
|
typedef ISAM2::sharedClique sharedClique;
|
|
for(const sharedClique& clique: isam.nodes() | br::map_values) {
|
|
// Compute expected gradient
|
|
GaussianFactorGraph jfg;
|
|
jfg += clique->conditional();
|
|
VectorValues expectedGradient = jfg.gradientAtZero();
|
|
// Compare with actual gradients
|
|
DenseIndex variablePosition = 0;
|
|
for(GaussianConditional::const_iterator jit = clique->conditional()->begin(); jit != clique->conditional()->end(); ++jit) {
|
|
const DenseIndex dim = clique->conditional()->getDim(jit);
|
|
Vector actual = clique->gradientContribution().segment(variablePosition, dim);
|
|
EXPECT(assert_equal(expectedGradient[*jit], actual));
|
|
variablePosition += dim;
|
|
}
|
|
LONGS_EQUAL((long)clique->gradientContribution().rows(), (long)variablePosition);
|
|
}
|
|
|
|
// Check gradient
|
|
VectorValues expectedGradient = GaussianFactorGraph(isam).gradientAtZero();
|
|
VectorValues expectedGradient2 = GaussianFactorGraph(isam).gradient(VectorValues::Zero(expectedGradient));
|
|
VectorValues actualGradient = isam.gradientAtZero();
|
|
EXPECT(assert_equal(expectedGradient2, expectedGradient));
|
|
EXPECT(assert_equal(expectedGradient, actualGradient));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, slamlike_solution_partial_relinearization_check)
|
|
{
|
|
// These variables will be reused and accumulate factors and values
|
|
Values fullinit;
|
|
NonlinearFactorGraph fullgraph;
|
|
ISAM2Params params(ISAM2GaussNewtonParams(0.001), 0.0, 0, false);
|
|
params.enablePartialRelinearizationCheck = true;
|
|
ISAM2 isam = createSlamlikeISAM2(fullinit, fullgraph, params);
|
|
|
|
// Compare solutions
|
|
CHECK(isam_check(fullgraph, fullinit, isam, *this, result_));
|
|
}
|
|
|
|
namespace {
|
|
bool checkMarginalizeLeaves(ISAM2& isam, const FastList<Key>& leafKeys) {
|
|
Matrix expectedAugmentedHessian, expected3AugmentedHessian;
|
|
KeyVector toKeep;
|
|
for(Key j: isam.getDelta() | br::map_keys)
|
|
if(find(leafKeys.begin(), leafKeys.end(), j) == leafKeys.end())
|
|
toKeep.push_back(j);
|
|
|
|
// Calculate expected marginal from iSAM2 tree
|
|
expectedAugmentedHessian = GaussianFactorGraph(isam).marginal(toKeep, EliminateQR)->augmentedHessian();
|
|
|
|
// Calculate expected marginal from cached linear factors
|
|
//assert(isam.params().cacheLinearizedFactors);
|
|
//Matrix expected2AugmentedHessian = isam.linearFactors_.marginal(toKeep, EliminateQR)->augmentedHessian();
|
|
|
|
// Calculate expected marginal from original nonlinear factors
|
|
expected3AugmentedHessian = isam.getFactorsUnsafe().linearize(isam.getLinearizationPoint())
|
|
->marginal(toKeep, EliminateQR)->augmentedHessian();
|
|
|
|
// Do marginalization
|
|
isam.marginalizeLeaves(leafKeys);
|
|
|
|
// Check
|
|
GaussianFactorGraph actualMarginalGraph(isam);
|
|
Matrix actualAugmentedHessian = actualMarginalGraph.augmentedHessian();
|
|
//Matrix actual2AugmentedHessian = linearFactors_.augmentedHessian();
|
|
Matrix actual3AugmentedHessian = isam.getFactorsUnsafe().linearize(
|
|
isam.getLinearizationPoint())->augmentedHessian();
|
|
assert(actualAugmentedHessian.allFinite());
|
|
|
|
// Check full marginalization
|
|
//cout << "treeEqual" << endl;
|
|
bool treeEqual = assert_equal(expectedAugmentedHessian, actualAugmentedHessian, 1e-6);
|
|
//actualAugmentedHessian.bottomRightCorner(1,1) = expected2AugmentedHessian.bottomRightCorner(1,1); bool linEqual = assert_equal(expected2AugmentedHessian, actualAugmentedHessian, 1e-6);
|
|
//cout << "nonlinEqual" << endl;
|
|
actualAugmentedHessian.bottomRightCorner(1,1) = expected3AugmentedHessian.bottomRightCorner(1,1); bool nonlinEqual = assert_equal(expected3AugmentedHessian, actualAugmentedHessian, 1e-6);
|
|
//bool linCorrect = assert_equal(expected3AugmentedHessian, expected2AugmentedHessian, 1e-6);
|
|
//actual2AugmentedHessian.bottomRightCorner(1,1) = expected3AugmentedHessian.bottomRightCorner(1,1); bool afterLinCorrect = assert_equal(expected3AugmentedHessian, actual2AugmentedHessian, 1e-6);
|
|
//cout << "nonlinCorrect" << endl;
|
|
bool afterNonlinCorrect = assert_equal(expected3AugmentedHessian, actual3AugmentedHessian, 1e-6);
|
|
|
|
bool ok = treeEqual && /*linEqual &&*/ nonlinEqual && /*linCorrect &&*/ /*afterLinCorrect &&*/ afterNonlinCorrect;
|
|
return ok;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, marginalizeLeaves1) {
|
|
ISAM2 isam;
|
|
NonlinearFactorGraph factors;
|
|
factors.addPrior(0, 0.0, model);
|
|
|
|
factors += BetweenFactor<double>(0, 1, 0.0, model);
|
|
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
|
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
|
|
|
Values values;
|
|
values.insert(0, 0.0);
|
|
values.insert(1, 0.0);
|
|
values.insert(2, 0.0);
|
|
|
|
FastMap<Key, int> constrainedKeys;
|
|
constrainedKeys.insert(make_pair(0, 0));
|
|
constrainedKeys.insert(make_pair(1, 1));
|
|
constrainedKeys.insert(make_pair(2, 2));
|
|
|
|
isam.update(factors, values, FactorIndices(), constrainedKeys);
|
|
|
|
std::list<Key> leafKeys {0};
|
|
EXPECT(checkMarginalizeLeaves(isam, leafKeys));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, marginalizeLeaves2) {
|
|
ISAM2 isam;
|
|
|
|
NonlinearFactorGraph factors;
|
|
factors.addPrior(0, 0.0, model);
|
|
|
|
factors += BetweenFactor<double>(0, 1, 0.0, model);
|
|
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
|
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
|
factors += BetweenFactor<double>(2, 3, 0.0, model);
|
|
|
|
Values values;
|
|
values.insert(0, 0.0);
|
|
values.insert(1, 0.0);
|
|
values.insert(2, 0.0);
|
|
values.insert(3, 0.0);
|
|
|
|
FastMap<Key, int> constrainedKeys;
|
|
constrainedKeys.insert(make_pair(0, 0));
|
|
constrainedKeys.insert(make_pair(1, 1));
|
|
constrainedKeys.insert(make_pair(2, 2));
|
|
constrainedKeys.insert(make_pair(3, 3));
|
|
|
|
isam.update(factors, values, FactorIndices(), constrainedKeys);
|
|
|
|
std::list<Key> leafKeys {0};
|
|
EXPECT(checkMarginalizeLeaves(isam, leafKeys));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, marginalizeLeaves3) {
|
|
ISAM2 isam;
|
|
|
|
NonlinearFactorGraph factors;
|
|
factors.addPrior(0, 0.0, model);
|
|
|
|
factors += BetweenFactor<double>(0, 1, 0.0, model);
|
|
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
|
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
|
|
|
factors += BetweenFactor<double>(2, 3, 0.0, model);
|
|
|
|
factors += BetweenFactor<double>(3, 4, 0.0, model);
|
|
factors += BetweenFactor<double>(4, 5, 0.0, model);
|
|
factors += BetweenFactor<double>(3, 5, 0.0, model);
|
|
|
|
Values values;
|
|
values.insert(0, 0.0);
|
|
values.insert(1, 0.0);
|
|
values.insert(2, 0.0);
|
|
values.insert(3, 0.0);
|
|
values.insert(4, 0.0);
|
|
values.insert(5, 0.0);
|
|
|
|
FastMap<Key, int> constrainedKeys;
|
|
constrainedKeys.insert(make_pair(0, 0));
|
|
constrainedKeys.insert(make_pair(1, 1));
|
|
constrainedKeys.insert(make_pair(2, 2));
|
|
constrainedKeys.insert(make_pair(3, 3));
|
|
constrainedKeys.insert(make_pair(4, 4));
|
|
constrainedKeys.insert(make_pair(5, 5));
|
|
|
|
isam.update(factors, values, FactorIndices(), constrainedKeys);
|
|
|
|
std::list<Key> leafKeys {0};
|
|
EXPECT(checkMarginalizeLeaves(isam, leafKeys));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, marginalizeLeaves4) {
|
|
ISAM2 isam;
|
|
|
|
NonlinearFactorGraph factors;
|
|
factors.addPrior(0, 0.0, model);
|
|
factors += BetweenFactor<double>(0, 2, 0.0, model);
|
|
factors += BetweenFactor<double>(1, 2, 0.0, model);
|
|
|
|
Values values;
|
|
values.insert(0, 0.0);
|
|
values.insert(1, 0.0);
|
|
values.insert(2, 0.0);
|
|
|
|
FastMap<Key, int> constrainedKeys;
|
|
constrainedKeys.insert(make_pair(0, 0));
|
|
constrainedKeys.insert(make_pair(1, 1));
|
|
constrainedKeys.insert(make_pair(2, 2));
|
|
|
|
isam.update(factors, values, FactorIndices(), constrainedKeys);
|
|
|
|
std::list<Key> leafKeys {1};
|
|
EXPECT(checkMarginalizeLeaves(isam, leafKeys));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, marginalizeLeaves5)
|
|
{
|
|
// Create isam2
|
|
ISAM2 isam = createSlamlikeISAM2();
|
|
|
|
// Marginalize
|
|
std::list<Key> marginalizeKeys {0};
|
|
EXPECT(checkMarginalizeLeaves(isam, marginalizeKeys));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, marginalCovariance)
|
|
{
|
|
// Create isam2
|
|
ISAM2 isam = createSlamlikeISAM2();
|
|
|
|
// Check marginal
|
|
Matrix expected = Marginals(isam.getFactorsUnsafe(), isam.getLinearizationPoint()).marginalCovariance(5);
|
|
Matrix actual = isam.marginalCovariance(5);
|
|
EXPECT(assert_equal(expected, actual));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ISAM2, calculate_nnz)
|
|
{
|
|
ISAM2 isam = createSlamlikeISAM2();
|
|
int expected = 241;
|
|
int actual = isam.roots().front()->calculate_nnz();
|
|
|
|
EXPECT_LONGS_EQUAL(expected, actual);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|