786 lines
25 KiB
C++
786 lines
25 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testExpressionFactor.cpp
|
|
* @date September 18, 2014
|
|
* @author Frank Dellaert
|
|
* @author Paul Furgale
|
|
* @brief unit tests for Block Automatic Differentiation
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/nonlinear/ExpressionFactor.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/PriorFactor.h>
|
|
#include <gtsam/nonlinear/expressionTesting.h>
|
|
#include <gtsam/slam/GeneralSFMFactor.h>
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
#include <gtsam/slam/expressions.h>
|
|
|
|
using namespace std::placeholders;
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
Point2 measured(-17, 30);
|
|
SharedNoiseModel model = noiseModel::Unit::Create(2);
|
|
|
|
// This deals with the overload problem and makes the expressions factor
|
|
// understand that we work on Point3
|
|
Point2 (*Project)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project;
|
|
|
|
namespace leaf {
|
|
// Create some values
|
|
struct MyValues: public Values {
|
|
MyValues() {
|
|
insert(2, Point2(3, 5));
|
|
}
|
|
} values;
|
|
|
|
// Create leaf
|
|
Point2_ p(2);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Leaf
|
|
TEST(ExpressionFactor, Leaf) {
|
|
using namespace leaf;
|
|
|
|
// Create old-style factor to create expected value and derivatives.
|
|
PriorFactor<Point2> old(2, Point2(0, 0), model);
|
|
|
|
// Create the equivalent factor with expression.
|
|
ExpressionFactor<Point2> f(model, Point2(0, 0), p);
|
|
|
|
// Check values and derivatives.
|
|
EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f.dim());
|
|
boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
|
|
EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test leaf expression with noise model of different variance.
|
|
TEST(ExpressionFactor, Model) {
|
|
using namespace leaf;
|
|
|
|
SharedNoiseModel model = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.01));
|
|
|
|
// Create old-style factor to create expected value and derivatives.
|
|
PriorFactor<Point2> old(2, Point2(0, 0), model);
|
|
|
|
// Create the equivalent factor with expression.
|
|
ExpressionFactor<Point2> f(model, Point2(0, 0), p);
|
|
|
|
// Check values and derivatives.
|
|
EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f.dim());
|
|
boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
|
|
EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9));
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-5, 1e-5); // another way
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test leaf expression with constrained noise model.
|
|
TEST(ExpressionFactor, Constrained) {
|
|
using namespace leaf;
|
|
|
|
SharedDiagonal model = noiseModel::Constrained::MixedSigmas(Vector2(0.2, 0));
|
|
|
|
// Create old-style factor to create expected value and derivatives
|
|
PriorFactor<Point2> old(2, Point2(0, 0), model);
|
|
|
|
// Concise version
|
|
ExpressionFactor<Point2> f(model, Point2(0, 0), p);
|
|
EXPECT_DOUBLES_EQUAL(old.error(values), f.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f.dim());
|
|
boost::shared_ptr<GaussianFactor> gf2 = f.linearize(values);
|
|
EXPECT(assert_equal(*old.linearize(values), *gf2, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Unary(Leaf))
|
|
TEST(ExpressionFactor, Unary) {
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(2, Point3(0, 0, 1));
|
|
|
|
JacobianFactor expected( //
|
|
2, (Matrix(2, 3) << 1, 0, 0, 0, 1, 0).finished(), //
|
|
Vector2(-17, 30));
|
|
|
|
// Create leaves
|
|
Point3_ p(2);
|
|
|
|
// Concise version
|
|
ExpressionFactor<Point2> f(model, measured, project(p));
|
|
EXPECT_LONGS_EQUAL(2, f.dim());
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT(assert_equal(expected, *jf, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Unary(Leaf)) and Unary(Unary(Leaf)))
|
|
// wide version (not handled in fixed-size pipeline)
|
|
typedef Eigen::Matrix<double,9,3> Matrix93;
|
|
Vector9 wide(const Point3& p, OptionalJacobian<9,3> H) {
|
|
Vector9 v;
|
|
v << p, p, p;
|
|
if (H) *H << I_3x3, I_3x3, I_3x3;
|
|
return v;
|
|
}
|
|
|
|
typedef Eigen::Matrix<double,9,9> Matrix9;
|
|
Vector9 id9(const Vector9& v, OptionalJacobian<9,9> H) {
|
|
if (H) *H = Matrix9::Identity();
|
|
return v;
|
|
}
|
|
|
|
TEST(ExpressionFactor, Wide) {
|
|
// Create some values
|
|
Values values;
|
|
values.insert(2, Point3(0, 0, 1));
|
|
Point3_ point(2);
|
|
Vector9 measured;
|
|
measured.setZero();
|
|
Expression<Vector9> expression(wide,point);
|
|
SharedNoiseModel model = noiseModel::Unit::Create(9);
|
|
|
|
ExpressionFactor<Vector9> f1(model, measured, expression);
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(f1, values, 1e-5, 1e-9);
|
|
|
|
Expression<Vector9> expression2(id9,expression);
|
|
ExpressionFactor<Vector9> f2(model, measured, expression2);
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(f2, values, 1e-5, 1e-9);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
static Point2 myUncal(const Cal3_S2& K, const Point2& p,
|
|
OptionalJacobian<2,5> Dcal, OptionalJacobian<2,2> Dp) {
|
|
return K.uncalibrate(p, Dcal, Dp);
|
|
}
|
|
|
|
// Binary(Leaf,Leaf)
|
|
TEST(ExpressionFactor, Binary) {
|
|
|
|
typedef internal::BinaryExpression<Point2, Cal3_S2, Point2> Binary;
|
|
|
|
Cal3_S2_ K_(1);
|
|
Point2_ p_(2);
|
|
Binary binary(myUncal, K_, p_);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Cal3_S2());
|
|
values.insert(2, Point2(0, 0));
|
|
|
|
// Check size
|
|
size_t size = binary.traceSize();
|
|
// Use Variable Length Array, allocated on stack by gcc
|
|
// Note unclear for Clang: http://clang.llvm.org/compatibility.html#vla
|
|
internal::ExecutionTraceStorage traceStorage[size];
|
|
internal::ExecutionTrace<Point2> trace;
|
|
Point2 value = binary.traceExecution(values, trace, traceStorage);
|
|
EXPECT(assert_equal(Point2(0,0),value, 1e-9));
|
|
// trace.print();
|
|
|
|
// Expected Jacobians
|
|
Matrix25 expected25;
|
|
expected25 << 0, 0, 0, 1, 0, 0, 0, 0, 0, 1;
|
|
Matrix2 expected22;
|
|
expected22 << 1, 0, 0, 1;
|
|
|
|
// Check matrices
|
|
boost::optional<Binary::Record*> r = trace.record<Binary::Record>();
|
|
CHECK(r);
|
|
EXPECT(assert_equal(expected25, (Matrix ) (*r)->dTdA1, 1e-9));
|
|
EXPECT(assert_equal(expected22, (Matrix ) (*r)->dTdA2, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Unary(Binary(Leaf,Leaf))
|
|
TEST(ExpressionFactor, Shallow) {
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Pose3());
|
|
values.insert(2, Point3(0, 0, 1));
|
|
|
|
// Create old-style factor to create expected value and derivatives
|
|
GenericProjectionFactor<Pose3, Point3> old(measured, model, 1, 2,
|
|
boost::make_shared<Cal3_S2>());
|
|
double expected_error = old.error(values);
|
|
GaussianFactor::shared_ptr expected = old.linearize(values);
|
|
|
|
// Create leaves
|
|
Pose3_ x_(1);
|
|
Point3_ p_(2);
|
|
|
|
// Construct expression, concise version
|
|
Point2_ expression = project(transformTo(x_, p_));
|
|
|
|
// Get and check keys and dims
|
|
KeyVector keys;
|
|
FastVector<int> dims;
|
|
boost::tie(keys, dims) = expression.keysAndDims();
|
|
LONGS_EQUAL(2,keys.size());
|
|
LONGS_EQUAL(2,dims.size());
|
|
LONGS_EQUAL(1,keys[0]);
|
|
LONGS_EQUAL(2,keys[1]);
|
|
LONGS_EQUAL(6,dims[0]);
|
|
LONGS_EQUAL(3,dims[1]);
|
|
|
|
// traceExecution of shallow tree
|
|
typedef internal::UnaryExpression<Point2, Point3> Unary;
|
|
size_t size = expression.traceSize();
|
|
internal::ExecutionTraceStorage traceStorage[size];
|
|
internal::ExecutionTrace<Point2> trace;
|
|
Point2 value = expression.traceExecution(values, trace, traceStorage);
|
|
EXPECT(assert_equal(Point2(0,0),value, 1e-9));
|
|
// trace.print();
|
|
|
|
// Expected Jacobians
|
|
Matrix23 expected23;
|
|
expected23 << 1, 0, 0, 0, 1, 0;
|
|
|
|
// Check matrices
|
|
boost::optional<Unary::Record*> r = trace.record<Unary::Record>();
|
|
CHECK(r);
|
|
EXPECT(assert_equal(expected23, (Matrix)(*r)->dTdA1, 1e-9));
|
|
|
|
// Linearization
|
|
ExpressionFactor<Point2> f2(model, measured, expression);
|
|
EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f2.dim());
|
|
boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
|
|
EXPECT(assert_equal(*expected, *gf2, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Binary(Leaf,Unary(Binary(Leaf,Leaf)))
|
|
TEST(ExpressionFactor, tree) {
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Pose3());
|
|
values.insert(2, Point3(0, 0, 1));
|
|
values.insert(3, Cal3_S2());
|
|
|
|
// Create old-style factor to create expected value and derivatives
|
|
GeneralSFMFactor2<Cal3_S2> old(measured, model, 1, 2, 3);
|
|
double expected_error = old.error(values);
|
|
GaussianFactor::shared_ptr expected = old.linearize(values);
|
|
|
|
// Create leaves
|
|
Pose3_ x(1);
|
|
Point3_ p(2);
|
|
Cal3_S2_ K(3);
|
|
|
|
// Create expression tree
|
|
Point3_ p_cam(x, &Pose3::transformTo, p);
|
|
Point2_ xy_hat(Project, p_cam);
|
|
Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
|
|
|
|
// Create factor and check value, dimension, linearization
|
|
ExpressionFactor<Point2> f(model, measured, uv_hat);
|
|
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f.dim());
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
EXPECT(assert_equal(*expected, *gf, 1e-9));
|
|
|
|
// Concise version
|
|
ExpressionFactor<Point2> f2(model, measured,
|
|
uncalibrate(K, project(transformTo(x, p))));
|
|
EXPECT_DOUBLES_EQUAL(expected_error, f2.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f2.dim());
|
|
boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
|
|
EXPECT(assert_equal(*expected, *gf2, 1e-9));
|
|
|
|
// Try ternary version
|
|
ExpressionFactor<Point2> f3(model, measured, project3(x, p, K));
|
|
EXPECT_DOUBLES_EQUAL(expected_error, f3.error(values), 1e-9);
|
|
EXPECT_LONGS_EQUAL(2, f3.dim());
|
|
boost::shared_ptr<GaussianFactor> gf3 = f3.linearize(values);
|
|
EXPECT(assert_equal(*expected, *gf3, 1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(ExpressionFactor, Compose1) {
|
|
|
|
// Create expression
|
|
Rot3_ R1(1), R2(2);
|
|
Rot3_ R3 = R1 * R2;
|
|
|
|
// Create factor
|
|
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Rot3());
|
|
values.insert(2, Rot3());
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(2);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT(assert_equal(I_3x3, H[0],1e-9));
|
|
EXPECT(assert_equal(I_3x3, H[1],1e-9));
|
|
|
|
// Check linearization
|
|
JacobianFactor expected(1, I_3x3, 2, I_3x3, Z_3x1);
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT(assert_equal(expected, *jf,1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with arguments referring to the same rotation
|
|
TEST(ExpressionFactor, compose2) {
|
|
|
|
// Create expression
|
|
Rot3_ R1(1), R2(1);
|
|
Rot3_ R3 = R1 * R2;
|
|
|
|
// Create factor
|
|
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Rot3());
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(1);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT_LONGS_EQUAL(1, H.size());
|
|
EXPECT(assert_equal(2*I_3x3, H[0],1e-9));
|
|
|
|
// Check linearization
|
|
JacobianFactor expected(1, 2 * I_3x3, Z_3x1);
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT(assert_equal(expected, *jf,1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with one arguments referring to a constant same rotation
|
|
TEST(ExpressionFactor, compose3) {
|
|
|
|
// Create expression
|
|
Rot3_ R1(Rot3::Identity()), R2(3);
|
|
Rot3_ R3 = R1 * R2;
|
|
|
|
// Create factor
|
|
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), R3);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(3, Rot3());
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(1);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT_LONGS_EQUAL(1, H.size());
|
|
EXPECT(assert_equal(I_3x3, H[0],1e-9));
|
|
|
|
// Check linearization
|
|
JacobianFactor expected(3, I_3x3, Z_3x1);
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT(assert_equal(expected, *jf,1e-9));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test compose with three arguments
|
|
Rot3 composeThree(const Rot3& R1, const Rot3& R2, const Rot3& R3,
|
|
OptionalJacobian<3, 3> H1, OptionalJacobian<3, 3> H2, OptionalJacobian<3, 3> H3) {
|
|
// return dummy derivatives (not correct, but that's ok for testing here)
|
|
if (H1)
|
|
*H1 = I_3x3;
|
|
if (H2)
|
|
*H2 = I_3x3;
|
|
if (H3)
|
|
*H3 = I_3x3;
|
|
return R1 * (R2 * R3);
|
|
}
|
|
|
|
TEST(ExpressionFactor, composeTernary) {
|
|
|
|
// Create expression
|
|
Rot3_ A(1), B(2), C(3);
|
|
Rot3_ ABC(composeThree, A, B, C);
|
|
|
|
// Create factor
|
|
ExpressionFactor<Rot3> f(noiseModel::Unit::Create(3), Rot3(), ABC);
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Rot3());
|
|
values.insert(2, Rot3());
|
|
values.insert(3, Rot3());
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(3);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT_LONGS_EQUAL(3, H.size());
|
|
EXPECT(assert_equal(I_3x3, H[0],1e-9));
|
|
EXPECT(assert_equal(I_3x3, H[1],1e-9));
|
|
EXPECT(assert_equal(I_3x3, H[2],1e-9));
|
|
|
|
// Check linearization
|
|
JacobianFactor expected(1, I_3x3, 2, I_3x3, 3, I_3x3, Z_3x1);
|
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
|
boost::shared_ptr<JacobianFactor> jf = //
|
|
boost::dynamic_pointer_cast<JacobianFactor>(gf);
|
|
EXPECT(assert_equal(expected, *jf,1e-9));
|
|
}
|
|
|
|
TEST(ExpressionFactor, tree_finite_differences) {
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(1, Pose3());
|
|
values.insert(2, Point3(0, 0, 1));
|
|
values.insert(3, Cal3_S2());
|
|
|
|
// Create leaves
|
|
Pose3_ x(1);
|
|
Point3_ p(2);
|
|
Cal3_S2_ K(3);
|
|
|
|
// Create expression tree
|
|
Point3_ p_cam(x, &Pose3::transformTo, p);
|
|
Point2_ xy_hat(Project, p_cam);
|
|
Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
|
|
|
|
const double fd_step = 1e-5;
|
|
const double tolerance = 1e-5;
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(uv_hat, values, fd_step, tolerance);
|
|
}
|
|
|
|
TEST(ExpressionFactor, push_back) {
|
|
NonlinearFactorGraph graph;
|
|
graph.addExpressionFactor(model, Point2(0, 0), leaf::p);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test with multiple compositions on duplicate keys
|
|
struct Combine {
|
|
double a, b;
|
|
Combine(double a, double b) : a(a), b(b) {}
|
|
double operator()(const double& x, const double& y, OptionalJacobian<1, 1> H1,
|
|
OptionalJacobian<1, 1> H2) {
|
|
if (H1) (*H1) << a;
|
|
if (H2) (*H2) << b;
|
|
return a * x + b * y;
|
|
}
|
|
};
|
|
|
|
TEST(Expression, testMultipleCompositions) {
|
|
const double tolerance = 1e-5;
|
|
const double fd_step = 1e-5;
|
|
|
|
Values values;
|
|
values.insert(1, 10.0);
|
|
values.insert(2, 20.0);
|
|
|
|
Expression<double> v1_(Key(1));
|
|
Expression<double> v2_(Key(2));
|
|
|
|
// BinaryExpression(1,2)
|
|
// Leaf, key = 1
|
|
// Leaf, key = 2
|
|
Expression<double> sum1_(Combine(1, 2), v1_, v2_);
|
|
EXPECT((sum1_.keys() == std::set<Key>{1, 2}));
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum1_, values, fd_step, tolerance);
|
|
|
|
// BinaryExpression(3,4)
|
|
// BinaryExpression(1,2)
|
|
// Leaf, key = 1
|
|
// Leaf, key = 2
|
|
// Leaf, key = 1
|
|
Expression<double> sum2_(Combine(3, 4), sum1_, v1_);
|
|
EXPECT((sum2_.keys() == std::set<Key>{1, 2}));
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum2_, values, fd_step, tolerance);
|
|
|
|
// BinaryExpression(5,6)
|
|
// BinaryExpression(3,4)
|
|
// BinaryExpression(1,2)
|
|
// Leaf, key = 1
|
|
// Leaf, key = 2
|
|
// Leaf, key = 1
|
|
// BinaryExpression(1,2)
|
|
// Leaf, key = 1
|
|
// Leaf, key = 2
|
|
Expression<double> sum3_(Combine(5, 6), sum1_, sum2_);
|
|
EXPECT((sum3_.keys() == std::set<Key>{1, 2}));
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum3_, values, fd_step, tolerance);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Another test, with Ternary Expressions
|
|
static double combine3(const double& x, const double& y, const double& z,
|
|
OptionalJacobian<1, 1> H1, OptionalJacobian<1, 1> H2,
|
|
OptionalJacobian<1, 1> H3) {
|
|
if (H1) (*H1) << 1.0;
|
|
if (H2) (*H2) << 2.0;
|
|
if (H3) (*H3) << 3.0;
|
|
return x + 2.0 * y + 3.0 * z;
|
|
}
|
|
|
|
TEST(Expression, testMultipleCompositions2) {
|
|
const double tolerance = 1e-5;
|
|
const double fd_step = 1e-5;
|
|
|
|
Values values;
|
|
values.insert(1, 10.0);
|
|
values.insert(2, 20.0);
|
|
values.insert(3, 30.0);
|
|
|
|
Expression<double> v1_(Key(1));
|
|
Expression<double> v2_(Key(2));
|
|
Expression<double> v3_(Key(3));
|
|
|
|
Expression<double> sum1_(Combine(4,5), v1_, v2_);
|
|
EXPECT((sum1_.keys() == std::set<Key>{1, 2}));
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum1_, values, fd_step, tolerance);
|
|
|
|
Expression<double> sum2_(combine3, v1_, v2_, v3_);
|
|
EXPECT((sum2_.keys() == std::set<Key>{1, 2, 3}));
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum2_, values, fd_step, tolerance);
|
|
|
|
Expression<double> sum3_(combine3, v3_, v2_, v1_);
|
|
EXPECT((sum3_.keys() == std::set<Key>{1, 2, 3}));
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum3_, values, fd_step, tolerance);
|
|
|
|
Expression<double> sum4_(combine3, sum1_, sum2_, sum3_);
|
|
EXPECT((sum4_.keys() == std::set<Key>{1, 2, 3}));
|
|
EXPECT_CORRECT_EXPRESSION_JACOBIANS(sum4_, values, fd_step, tolerance);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test multiplication with the inverse of a matrix
|
|
TEST(ExpressionFactor, MultiplyWithInverse) {
|
|
auto model = noiseModel::Isotropic::Sigma(3, 1);
|
|
|
|
// Create expression
|
|
Vector3_ f_expr(MultiplyWithInverse<3>(), Expression<Matrix3>(0), Vector3_(1));
|
|
|
|
// Check derivatives
|
|
Values values;
|
|
Matrix3 A = Vector3(1, 2, 3).asDiagonal();
|
|
A(0, 1) = 0.1;
|
|
A(0, 2) = 0.1;
|
|
const Vector3 b(0.1, 0.2, 0.3);
|
|
values.insert<Matrix3>(0, A);
|
|
values.insert<Vector3>(1, b);
|
|
ExpressionFactor<Vector3> factor(model, Vector3::Zero(), f_expr);
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
// Test multiplication with the inverse of a matrix function
|
|
namespace test_operator {
|
|
Vector3 f(const Point2& a, const Vector3& b, OptionalJacobian<3, 2> H1,
|
|
OptionalJacobian<3, 3> H2) {
|
|
Matrix3 A = Vector3(1, 2, 3).asDiagonal();
|
|
A(0, 1) = a.x();
|
|
A(0, 2) = a.y();
|
|
A(1, 0) = a.x();
|
|
if (H1) *H1 << b.y(), b.z(), b.x(), 0, 0, 0;
|
|
if (H2) *H2 = A;
|
|
return A * b;
|
|
}
|
|
}
|
|
|
|
TEST(ExpressionFactor, MultiplyWithInverseFunction) {
|
|
auto model = noiseModel::Isotropic::Sigma(3, 1);
|
|
|
|
using test_operator::f;
|
|
Vector3_ f_expr(MultiplyWithInverseFunction<Point2, 3>(f),
|
|
Expression<Point2>(0), Vector3_(1));
|
|
|
|
// Check derivatives
|
|
Point2 a(1, 2);
|
|
const Vector3 b(0.1, 0.2, 0.3);
|
|
Matrix32 H1;
|
|
Matrix3 A;
|
|
const Vector Ab = f(a, b, H1, A);
|
|
CHECK(assert_equal(A * b, Ab));
|
|
CHECK(assert_equal(
|
|
numericalDerivative11<Vector3, Point2>(
|
|
std::bind(f, std::placeholders::_1, b, boost::none, boost::none), a),
|
|
H1));
|
|
|
|
Values values;
|
|
values.insert<Point2>(0, a);
|
|
values.insert<Vector3>(1, b);
|
|
ExpressionFactor<Vector3> factor(model, Vector3::Zero(), f_expr);
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
// Test N-ary variadic template
|
|
class TestNaryFactor
|
|
: public gtsam::ExpressionFactorN<gtsam::Point3 /*return type*/,
|
|
gtsam::Rot3, gtsam::Point3,
|
|
gtsam::Rot3, gtsam::Point3> {
|
|
private:
|
|
using This = TestNaryFactor;
|
|
using Base =
|
|
gtsam::ExpressionFactorN<gtsam::Point3 /*return type*/,
|
|
gtsam::Rot3, gtsam::Point3, gtsam::Rot3, gtsam::Point3>;
|
|
|
|
public:
|
|
/// default constructor
|
|
TestNaryFactor() = default;
|
|
~TestNaryFactor() override = default;
|
|
|
|
TestNaryFactor(gtsam::Key kR1, gtsam::Key kV1, gtsam::Key kR2, gtsam::Key kV2,
|
|
const gtsam::SharedNoiseModel &model, const gtsam::Point3& measured)
|
|
: Base({kR1, kV1, kR2, kV2}, model, measured) {
|
|
this->initialize(expression({kR1, kV1, kR2, kV2}));
|
|
}
|
|
|
|
/// @return a deep copy of this factor
|
|
gtsam::NonlinearFactor::shared_ptr clone() const override {
|
|
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
|
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
|
}
|
|
|
|
// Return measurement expression
|
|
gtsam::Expression<gtsam::Point3> expression(
|
|
const std::array<gtsam::Key, NARY_EXPRESSION_SIZE> &keys) const override {
|
|
gtsam::Expression<gtsam::Rot3> R1_(keys[0]);
|
|
gtsam::Expression<gtsam::Point3> V1_(keys[1]);
|
|
gtsam::Expression<gtsam::Rot3> R2_(keys[2]);
|
|
gtsam::Expression<gtsam::Point3> V2_(keys[3]);
|
|
return {gtsam::rotate(R1_, V1_) - gtsam::rotate(R2_, V2_)};
|
|
}
|
|
|
|
/** print */
|
|
void print(const std::string &s,
|
|
const gtsam::KeyFormatter &keyFormatter =
|
|
gtsam::DefaultKeyFormatter) const override {
|
|
std::cout << s << "TestNaryFactor("
|
|
<< keyFormatter(Factor::keys_[0]) << ","
|
|
<< keyFormatter(Factor::keys_[1]) << ","
|
|
<< keyFormatter(Factor::keys_[2]) << ","
|
|
<< keyFormatter(Factor::keys_[3]) << ")\n";
|
|
gtsam::traits<gtsam::Point3>::Print(measured_, " measured: ");
|
|
this->noiseModel_->print(" noise model: ");
|
|
}
|
|
|
|
/** equals */
|
|
bool equals(const gtsam::NonlinearFactor &expected,
|
|
double tol = 1e-9) const override {
|
|
const This *e = dynamic_cast<const This *>(&expected);
|
|
return e != nullptr && Base::equals(*e, tol) &&
|
|
gtsam::traits<gtsam::Point3>::Equals(measured_,e->measured_, tol);
|
|
}
|
|
|
|
private:
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template <class ARCHIVE>
|
|
void serialize(ARCHIVE &ar, const unsigned int /*version*/) {
|
|
ar &boost::serialization::make_nvp(
|
|
"TestNaryFactor",
|
|
boost::serialization::base_object<Base>(*this));
|
|
ar &BOOST_SERIALIZATION_NVP(measured_);
|
|
}
|
|
};
|
|
|
|
TEST(ExpressionFactor, variadicTemplate) {
|
|
using gtsam::symbol_shorthand::R;
|
|
using gtsam::symbol_shorthand::V;
|
|
|
|
// Create factor
|
|
TestNaryFactor f(R(0),V(0), R(1), V(1), noiseModel::Unit::Create(3), Point3(0,0,0));
|
|
|
|
// Create some values
|
|
Values values;
|
|
values.insert(R(0), Rot3::Ypr(0.1, 0.2, 0.3));
|
|
values.insert(V(0), Point3(1, 2, 3));
|
|
values.insert(R(1), Rot3::Ypr(0.2, 0.5, 0.2));
|
|
values.insert(V(1), Point3(5, 6, 7));
|
|
|
|
// Check unwhitenedError
|
|
std::vector<Matrix> H(4);
|
|
Vector actual = f.unwhitenedError(values, H);
|
|
EXPECT_LONGS_EQUAL(4, H.size());
|
|
EXPECT(assert_equal(Eigen::Vector3d(-5.63578115, -4.85353243, -1.4801204), actual, 1e-5));
|
|
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(f, values, 1e-8, 1e-5);
|
|
}
|
|
|
|
TEST(ExpressionFactor, normalize) {
|
|
auto model = noiseModel::Isotropic::Sigma(3, 1);
|
|
|
|
// Create expression
|
|
const auto x = Vector3_(1);
|
|
Vector3_ f_expr = normalize(x);
|
|
|
|
// Check derivatives
|
|
Values values;
|
|
values.insert(1, Vector3(1, 2, 3));
|
|
ExpressionFactor<Vector3> factor(model, Vector3(1.0/sqrt(14), 2.0/sqrt(14), 3.0/sqrt(14)), f_expr);
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
|
|
}
|
|
|
|
TEST(ExpressionFactor, crossProduct) {
|
|
auto model = noiseModel::Isotropic::Sigma(3, 1);
|
|
|
|
// Create expression
|
|
const auto a = Vector3_(1);
|
|
const auto b = Vector3_(2);
|
|
Vector3_ f_expr = cross(a, b);
|
|
|
|
// Check derivatives
|
|
Values values;
|
|
values.insert(1, Vector3(0.1, 0.2, 0.3));
|
|
values.insert(2, Vector3(0.4, 0.5, 0.6));
|
|
ExpressionFactor<Vector3> factor(model, Vector3::Zero(), f_expr);
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
|
|
}
|
|
|
|
TEST(ExpressionFactor, dotProduct) {
|
|
auto model = noiseModel::Isotropic::Sigma(1, 1);
|
|
|
|
// Create expression
|
|
const auto a = Vector3_(1);
|
|
const auto b = Vector3_(2);
|
|
Double_ f_expr = dot(a, b);
|
|
|
|
// Check derivatives
|
|
Values values;
|
|
values.insert(1, Vector3(0.1, 0.2, 0.3));
|
|
values.insert(2, Vector3(0.4, 0.5, 0.6));
|
|
ExpressionFactor<double> factor(model, .0, f_expr);
|
|
EXPECT_CORRECT_FACTOR_JACOBIANS(factor, values, 1e-5, 1e-5);
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
int main() {
|
|
TestResult tr;
|
|
return TestRegistry::runAllTests(tr);
|
|
}
|
|
/* ************************************************************************* */
|
|
|