gtsam/gtsam/geometry/Rot2.h

238 lines
6.1 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Rot2.h
* @brief 2D rotation
* @date Dec 9, 2009
* @author Frank Dellaert
* @author John Lambert
*/
#pragma once
#include <gtsam/geometry/Point2.h>
#include <gtsam/base/Lie.h>
#include <random>
namespace gtsam {
/**
* Rotation matrix
* NOTE: the angle theta is in radians unless explicitly stated
* @ingroup geometry
* \nosubgrouping
*/
class GTSAM_EXPORT Rot2 : public LieGroup<Rot2, 1> {
/** we store cos(theta) and sin(theta) */
double c_, s_;
/** normalize to make sure cos and sin form unit vector */
Rot2& normalize();
/** private constructor from cos/sin */
inline Rot2(double c, double s) : c_(c), s_(s) {}
public:
/// @name Constructors and named constructors
/// @{
/** default constructor, zero rotation */
Rot2() : c_(1.0), s_(0.0) {}
/** copy constructor */
Rot2(const Rot2& r) = default;
// : Rot2(r.c_, r.s_) {}
/// Constructor from angle in radians == exponential map at identity
Rot2(double theta) : c_(cos(theta)), s_(sin(theta)) {}
// Rot2& operator=(const gtsam::Rot2& other) = default;
/// Named constructor from angle in radians
static Rot2 fromAngle(double theta) {
return Rot2(theta);
}
/// Named constructor from angle in degrees
static Rot2 fromDegrees(double theta) {
static const double degree = M_PI / 180;
return fromAngle(theta * degree);
}
/// Named constructor from cos(theta),sin(theta) pair
static Rot2 fromCosSin(double c, double s);
/**
* Named constructor with derivative
* Calculate relative bearing to a landmark in local coordinate frame
* @param d 2D location of landmark
* @param H optional reference for Jacobian
* @return 2D rotation \f$ \in SO(2) \f$
*/
static Rot2 relativeBearing(const Point2& d, OptionalJacobian<1,2> H =
{});
/** Named constructor that behaves as atan2, i.e., y,x order (!) and normalizes */
static Rot2 atan2(double y, double x);
/**
* Random, generates random angle \f$\in\f$ [-pi,pi]
* Example:
* std::mt19937 engine(42);
* Unit3 unit = Unit3::Random(engine);
*/
static Rot2 Random(std::mt19937 & rng);
/// @}
/// @name Testable
/// @{
/** print */
void print(const std::string& s = "theta") const;
/** equals with an tolerance */
bool equals(const Rot2& R, double tol = 1e-9) const;
/// @}
/// @name Group
/// @{
/** Identity */
inline static Rot2 Identity() { return Rot2(); }
/** The inverse rotation - negative angle */
Rot2 inverse() const { return Rot2(c_, -s_);}
/** Compose - make a new rotation by adding angles */
Rot2 operator*(const Rot2& R) const {
return fromCosSin(c_ * R.c_ - s_ * R.s_, s_ * R.c_ + c_ * R.s_);
}
/// @}
/// @name Lie Group
/// @{
/// Exponential map at identity - create a rotation from canonical coordinates
static Rot2 Expmap(const Vector1& v, ChartJacobian H = {});
/// Log map at identity - return the canonical coordinates of this rotation
static Vector1 Logmap(const Rot2& r, ChartJacobian H = {});
/** Calculate Adjoint map */
Matrix1 AdjointMap() const { return I_1x1; }
/// Left-trivialized derivative of the exponential map
static Matrix ExpmapDerivative(const Vector& /*v*/) {
return I_1x1;
}
/// Left-trivialized derivative inverse of the exponential map
static Matrix LogmapDerivative(const Vector& /*v*/) {
return I_1x1;
}
// Chart at origin simply uses exponential map and its inverse
struct ChartAtOrigin {
static Rot2 Retract(const Vector1& v, ChartJacobian H = {}) {
return Expmap(v, H);
}
static Vector1 Local(const Rot2& r, ChartJacobian H = {}) {
return Logmap(r, H);
}
};
using LieGroup<Rot2, 1>::inverse; // version with derivative
/// @}
/// @name Group Action on Point2
/// @{
/**
* rotate point from rotated coordinate frame to world \f$ p^w = R_c^w p^c \f$
*/
Point2 rotate(const Point2& p, OptionalJacobian<2, 1> H1 = {},
OptionalJacobian<2, 2> H2 = {}) const;
/** syntactic sugar for rotate */
inline Point2 operator*(const Point2& p) const {
return rotate(p);
}
/**
* rotate point from world to rotated frame \f$ p^c = (R_c^w)^T p^w \f$
*/
Point2 unrotate(const Point2& p, OptionalJacobian<2, 1> H1 = {},
OptionalJacobian<2, 2> H2 = {}) const;
/// @}
/// @name Standard Interface
/// @{
/// Creates a unit vector as a Point2
inline Point2 unit() const {
return Point2(c_, s_);
}
/** return angle (RADIANS) */
double theta() const {
return ::atan2(s_, c_);
}
/** return angle (DEGREES) */
double degrees() const {
const double degree = M_PI / 180;
return theta() / degree;
}
/** return cos */
inline double c() const {
return c_;
}
/** return sin */
inline double s() const {
return s_;
}
/** return 2*2 rotation matrix */
Matrix2 matrix() const;
/** return 2*2 transpose (inverse) rotation matrix */
Matrix2 transpose() const;
/** Find closest valid rotation matrix, given a 2x2 matrix */
static Rot2 ClosestTo(const Matrix2& M);
private:
#if GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
ar & BOOST_SERIALIZATION_NVP(c_);
ar & BOOST_SERIALIZATION_NVP(s_);
}
#endif
};
template<>
struct traits<Rot2> : public internal::LieGroup<Rot2> {};
template<>
struct traits<const Rot2> : public internal::LieGroup<Rot2> {};
} // gtsam